Offre en lien avec l’Action/le Réseau : – — –/Doctorants
Laboratoire/Entreprise : LIST3N/UTT et Université de Sfax
Durée : 36 mois
Contact : malika.kharouf@utt.fr
Date limite de publication : 2025-06-15
Contexte :
Cette thèse vise à développer une approche d’analyse spectrale des graphes de Barabasi- Albert (BA) à l’aide de la théorie des matrices aléatoires et à appliquer ces techniques à la médecine personnalisée en radiologie mammaire. L’objectif est d’exploiter les caractéristiques spectrales des réseaux complexes pour améliorer la détection et la classification des anomalies en imagerie médicale, notamment dans le cadre du diagnostic du cancer du sein.
Sujet :
Nous examinerons les propriétés spectrales des graphes BA afin d’extraire des motifs exploitables pour l’analyse des images médicales. La distribution des valeurs propres des matrices d’adjacence sera explorée afin de détecter les schémas structurels caractéristiques des graphes, en mettant en évidence les réseaux fortement connectés susceptibles de refléter des anomalies.
Lien entre signatures spectrales et anomalies médicales:
L’utilisation de la théorie des matrices aléatoires nous permettra de modéliser et de mieux comprendre les variations spectrales associées aux différents types de tumeurs mammaires. En analysant les perturbations dans la structure spectrale des graphes, nous serons en mesure de détecter des motifs anormaux liés aux pathologies médicales.
Développement d’un modèle de fusion multimodale dynamique:
En combinant les informations extraites des graphes avec des techniques avancées d’apprentissage automatique, nous proposerons un système de fusion multimodale adaptatif, capable d’ajuster dynamiquement les données en fonction de leur pertinence clinique. Ce système exploitera les propriétés spectrales pour réduire la redondance et concentrer l’analyse sur
les modalités les plus informatives.
Techniques de détection et d’intelligence artificielle:
Nous utiliserons des techniques de détection d’anomalies basées sur l’analyse spectrale et l’intelligence artificielle, telles que les autoencodeurs variationnels et les réseaux neuronaux profonds. Ces approches permettront d’améliorer la capacité du modèle à différencier les images normales et anormales, en exploitant les signatures spectrales extraites.
Validation clinique du modèle:
Notre approche sera validée sur des données hospitalières réelles issues du CHU de Sfax, permettant une vérification rigoureuse des performances du modèle et de son utilité clinique. L’impact de notre modèle sur l’optimisation des protocoles de diagnostic sera également examiné.
Profil du candidat :
Master 2 Mathématiques Appliquées, spécialisé en Statistique, ou formation équivalente de type école d’ingénieurs. Des compétences en informatique et logiciel de statistique sont fortement souhaitées (Python et/ou R).
Formation et compétences requises :
Master 2 Statistique ou équivalent école d’ingénieurs
Adresse d’emploi :
Université de technologie de Troyes et université de Sfax
Document attaché : 202505160654_ThèseStat-Cotutelle-UTT-Sfax.pdf