Modélisations par approches neuronales des déformations d’un organe observé par IRM dynamique.

When:
31/01/2026 – 01/02/2026 all-day
2026-01-31T01:00:00+01:00
2026-02-01T01:00:00+01:00

Offre en lien avec l’Action/le Réseau : – — –/– — –

Laboratoire/Entreprise : Laboratoire d’Informatique et Systèmes – LIS – UMR
Durée : 5 à 6 mois
Contact : marc-emmanuel.bellemare@univ-amu.fr
Date limite de publication : 2026-01-31

Contexte :
Le stage se déroulera à Marseille essentiellement au laboratoire d’informatique et des systèmes (LIS) dans l’équipe Images & Modèles sur le campus de St Jérôme (https://im.lis-lab.fr).
Le LIS UMR 7020 fédère plus de 375 membres. La recherche y est structurée au sein de pôles (calcul, science des données, analyse et contrôle des systèmes, signal et image), et centrée sur les activités dans les domaines de l’informatique, de l’automatique, du signal et de l’image. L’apprentissage profond en particulier y est un thème transverse et le LIS dispose d’une plateforme dédiée, un cluster de nœuds GPU ainsi que le personnel de gestion nécessaire.

Sujet :
La modélisation des déformations des organes abdominaux revêt une importance cruciale pour la santé des patients et pour de nombreuses applications cliniques, telles que la planification de la radiothérapie adaptative, le suivi de la progression des maladies ou encore l’analyse biomécanique des tissus. L’imagerie par résonance ma- gnétique (IRM) peut offrir une visualisation spatiale et en coupe des déformations d’organes in vivo. Cependant, l’état de l’art actuel présente plusieurs limitations, notamment en termes de résolution et de reconstruction fidèle de l’évolution tridimensionnelle et dynamique des organes. L’objectif de ce stage est de proposer des solutions innovantes pour pallier ces limites.
Dans le cadre d’un projet de recherche mené en collaboration avec l’AP-HM, nous nous intéressons au suivi des déformations des principaux organes pelviens. L’approche actuelle [1, 4] consiste à détecter un contour sur une série d’images 2D, puis à effectuer un échantillonnage spatial de ce contour initial. Les contours suivants sont ensuite estimés de manière récurrente à l’aide d’un modèle de transport optimal, la déformation finale étant calculée à partir de la distance entre les points d’échantillonnage obtenus. Cependant, cette méthode présente plusieurs faiblesses : la construction de l’échantillonnage est souvent arbitraire, le transport optimal peut introduire des biais difficiles à maîtriser, et la définition même de la distance utilisée reste discutable. Ces éléments limitent la robustesse et la généralisabilité de l’approche, malgré son intérêt scientifique certain.
Afin de dépasser ces limitations, ce stage vise à exploiter des modèles et méthodes récents capables d’apporter plus de cohérence et de précision à la modélisation des déformations. Le premier axe d’amélioration concerne la discrétisation : celle-ci peut être évitée grâce aux représentations neuronales implicites (Implicit Neural Representations, INRs). Ces dernières reposent sur le principe d’approximation universelle des réseaux de neurones, leur permettant de représenter n’importe quelle forme continue. Ainsi, le contour précédemment échantillonné sera alors directement modélisé par un réseau neuronal.
Pour l’estimation des déformations, nous proposons d’utiliser des réseaux de neurones informés par la phyique (Physics-Informed Neural Networks, PINNs). L’idée est d’intégrer des contraintes issues des équations mécaniques de la déformation afin d’estimer à la fois le champ de déformation et les paramètres des lois de comportement des tissus.
En résumé, le stage a pour objectif de combiner les représentations neuronales implicites et les réseaux de neurones informés par la physique afin de modéliser les déformations d’organes alignées sur des données d’imagerie IRM, offrant ainsi une approche plus continue, précise et physiquement cohérente de la dynamique des organes observés.

Réalisation
L’objectif principal de ce stage est de développer et d’évaluer des modèles de déformation d’organes, en s’appuyant sur des approches d’apprentissage profond et de modélisation physique.
Les étapes et objectifs clés sont les suivants :
— Développer une représentation neuronale implicite (INR) des contours de déformation de la vessie en 2D + temps.
— Évaluer les performances de cette représentation en termes de précision et de continuité temporelle.
— Concevoir une approche basée sur les réseaux de neurones informés par la physique afin de reconstruire le champ de déformation et d’estimer les paramètres mécaniques du comportement.
— Évaluer les performances du PINN selon deux perspectives possibles :
— comme modèle hybride, intégrant à la fois les données expérimentales et les contraintes issues des équations physiques, afin de guider l’apprentissage vers des solutions cohérentes avec les lois mécaniques.
— ou comme problème inverse, visant à identifier les paramètres physiques (par ex. propriétés mécaniques des tissus) et les déformations spatiales à partir des données observées, tout en respectant les équations de la mécanique des milieux continus.
— Perspective d’extension vers la 3D+temps

Données
Le projet s’appuiera sur un jeu de données d’IRM dynamiques de la vessie, collecté auprès de 50 patientes. L’échantillonnage temporel, à raison d’une image par seconde, des séquences sagittales dynamiques fournit 12 images par patiente. Les contours de la vessie ont été extraits de manière manuelle ou semi-automatique, sur l’ensemble des images de la séquence dynamique. Au total, 600 contours ont ainsi été obtenus, constituant la base de données utilisée pour l’apprentissage et l’évaluation des performances du modèle.

Profil du candidat :
Le ou la candidat.e sera intéressé.e par un domaine pluridisciplinaire embrassant l’analyse d’image, les mathématiques appliquées, le deep-learning, dans un contexte médical.
Des connaissances en équations aux dérivées partielles (EDP) et en méthodes de résolution par éléments finis constituent un atout supplémentaire pour ce stage.

Formation et compétences requises :
De formation Bac+5 dans une formation concernée par le traitement d’image. Une expérience de la programmation avec l’environnement python est un pré-requis, la connaissance de la bibliothèque JAX serait un plus.
Le stage aura une durée de 4 à 6 mois avec la gratification d’usage (de l’ordre de 600€ par mois).

Adresse d’emploi :
Laboratoire d’Informatique et Systèmes – LIS – UMR CNRS 7020 – Aix-Marseille Université
Campus scientifique de St Jérôme – Av. Escadrille Normandie Niemen -13397 Marseille Cedex 20
www.lis-lab.fr

Document attaché : 202511071339_M2_stage_LIS_PINN.pdf