Offre en lien avec l’Action/le Réseau : – — –/– — –
Laboratoire/Entreprise : BRGM
Durée : 6 mois
Contact : c.gracianne@brgm.fr
Date limite de publication : 2025-12-15
Contexte :
Rejoindre le Bureau de Recherches Géologiques et Minières (BRGM), c’est intégrer l’établissement public français de référence dans les sciences de la Terre, qui rassemble 1000 experts passionnés dans 29 implantations en France métropolitaine et en Outre-mer. Le BRGM œuvre à la connaissance du sous-sol pour répondre aux grands défis environnementaux, à travers des projets scientifiques innovants et à fort enjeu sociétal.
Dans le cadre d’un programme de recherche dédié à l’aléa sismique à Mayotte, l’objectif est de détecter et cartographier les interfaces géologiques responsables de l’effet de site, phénomène amplifiant localement les ondes sismiques. Après une phase exploratoire sur trois sites pilotes, le projet vise désormais l’automatisation de cette détection à l’échelle de l’île à partir de données électromagnétiques aéroportées (AEM).
Sujet :
Dans le contexte volcanique et sismique de Mayotte, la présence d’interfaces géologiques marquant des contrastes lithologiques importants (passage de couches dures à meubles) joue un rôle majeur dans l’amplification locale des ondes sismiques. Identifier ces interfaces à grande échelle est essentiel pour la cartographie de l’aléa sismique. Le BRGM a conduit une première phase de détection manuelle sur trois zones test via l’analyse de données AEM (résistivités), complétée par une phase d’automatisation sur l’ensemble de l’île.
Les premiers tests sur des modèles supervisés se sont révélés insuffisants, notamment pour prédire les interfaces peu représentées. Une approche alternative consistant à reformuler le problème comme une tâche de segmentation d’image avec un réseau U-Net 2D a permis de mieux exploiter la continuité spatiale des profils AEM. Cependant, la validation de ce modèle a montré des limites,avec une concentration des erreurs dans certaines profondeurs critiques (5-10 m et 20-40 m), rendant les performances trop optimistes.
L’objectif du stage est de continuer ces développements en comparant plusieurs méthodologies avancées pour la détection automatisée de ces interfaces géologiques à partir des profils AEM. Les approches testées incluront :
– des modèles classiques améliorés (RF, CNN) ;
– des approches topologiques (TDA) pour quantifier l’incertitude structurelle ;
– des approches guidées par la physique (PINNs) intégrant des contraintes géologiques
Le ou la stagiaire devra construire des baselines reproductibles, définir un protocole d’évaluation robuste, comparer les performances des modèles sur l’ensemble de l’île, et surtout évaluer leur capacité à corriger les erreurs récurrentes identifiées sur les zones critiques (Dembeni, Longoni). Une attention particulière sera portée à la localisation des faux positifs/négatifs en profondeur. L’analyse des résultats par cartographie d’erreurs enrichira les réflexions sur la généralisation des approches IA en géosciences.
Profil du candidat :
Vous êtes autonome, curieux·se et rigoureux·se, avec une capacité à structurer et documenter vos analyses. Vous êtes à l’aise pour explorer, prétraiter, visualiser et interpréter des jeux de données complexes. Vous accordez une attention particulière à la robustesse méthodologique et êtes capable d’évoluer dans un environnement de recherche.
Doté·e d’un bon relationnel, vous savez collaborer au sein d’une équipe pluridisciplinaire, en lien étroit avec des spécialistes du domaine (géologues, géophysiciens, data scientists). Vous faites preuve de rigueur scientifique, d’esprit critique et de qualités de communication, à l’écrit comme à l’oral.
Formation et compétences requises :
Formation de niveau Bac+5 : Master 2 ou dernière année d’école d’ingénieur, avec spécialisation en data science, intelligence artificielle, mathématiques appliquées ou géosciences numériques.
Solides bases en apprentissage automatique : régression, classification, réseaux de neurones.
Maîtrise du langage Python et des bibliothèques standards en data science : scikit-learn, PyTorch ou TensorFlow, NumPy, Pandas, Matplotlib.
Une première expérience avec des architectures convolutives (CNN) ou de segmentation (U-Net) est un atout.
Une familiarité avec les problématiques de traitement de données géospatiales ou géophysiques est appréciée.
Des connaissances en Topological Data Analysis (TDA) ou en Physics-Informed Neural Networks (PINNs) seraient un plus, mais peuvent être développées durant le stage.
Intérêt pour les notions de validation rigoureuse, d’incertitude, de reproductibilité et de qualité des données.
Adresse d’emploi :
3 avenue Claude Guillemin, 45000 Orléans
Document attaché : 202511060727_Stage_BRGM_2026.pdf

