Offre en lien avec l’Action/le Réseau : – — –/– — –
Laboratoire/Entreprise : LISTIC
Durée : 4-6 mois
Contact : argheesh.bhanot@univ-smb.fr
Date limite de publication : 2026-04-30
Contexte :
Sujet :
En sciences naturelles, la modélisation des phénomènes physiques constitue toujours un sujet difficile. Les formules existantes ne suffisent parfois pas à représenter adéquatement les mécanismes complexes, notamment ceux qui ne sont pas directement observables. Il arrive également que ces formules ne correspondent pas parfaitement aux observations issues des données. Ces problèmes ont, par exemple, été rencontrés dans le suivi de la concentration des polluants, l’étalement de la végétation ou encore les coulées de lave.
Dans ce projet, nous nous concentrons sur la modélisation volcanique. En volcanologie, par exemple, les scientifiques disposent de mesures de déplacements en surface, obtenues grâce à l’imagerie SAR, induits par une source volcanique en profondeur, et utilisent ces mesures pour estimer les paramètres physiques d’un modèle volcanique.
Dans un premier temps, nous sommes partis d’un modèle simple sous forme d’une expression analytique : le modèle Mogi. Dans ce modèle, deux paramètres clés, la variation du volume et la profondeur de la chambre magmatique ont été modifiés pour générer des données synthétiques. En utilisant la régression symbolique, nous avons exploré des expressions mathématiques directement à partir des données. La
pertinence de l’approche et la sensibilité de la modélisation à la variété de l’activité volcanique, sur des données synthétiques et des sites volcaniques réels, ont été mesurées et comparées au modèle Mogi original. L’approche fonctionne bien jusqu’à un certain niveau de bruit, notamment sur les données
synthétiques. L’objectif du stage consiste à utiliser les méthodes de régression symbolique pour affiner le modèle Mogi, car il reste une vision simplifiée de la physique sous-jacente. Des travaux supplémentaires sont encore nécessaires pour améliorer les résultats sur les données réelles en proposant des nouvelles techniques en régression symbolique. En s’appuyant sur des travaux d’IA classique développés au laboratoire sur
l’inversion de modèles géophysiques, trois types de données sont disponibles pour créer un cadre expérimental et de validation : 1) des déplacements simulés à partir du modèle Mogi ; 2) des déplacements simulés avec un bruit ajouté ; 3) des déplacements réels sur des volcans africains. Selon
l’avancement du projet, cette étude pourra être étendue à un modèle volcanique plus sophistiqué, par exemple le modèle Okada, qui décrit le mécanisme de fonctionnement d’un volcan à l’aide d’un plus grand nombre de paramètres et s’appuie sur des équations différentielles. Le stagiaire appuiera entre autres sur les articles suivants :
– Cranmer, M. (2023). Interpretable machine learning for science with PySR and SymbolicRegression. jl.
arXiv preprint arXiv:2305.01582.
– Tenachi, W., et al. (2023). Physical Symbolic Optimization. arXiv preprint arXiv:2312.03612.
– Albino, F., & Biggs, J. (2021). Magmatic processes in the East African Rift system: insights from a 2015–
2020 Sentinel‐1 InSAR survey. Geochemistry, Geophysics, Geosystems, 22(3), e2020GC009488.
– Dzurisin, D. (2007), Volcano Deformation: Geodetic Monitoring Techniques. Mogi, K. (1958), Bull. Earthq.
Inst. U. Tokyo, 36, 99‐134 Delaney, P., McTigue, D. (1994) Bull. Volcanology, 56 417‐42
– Lopez-Uroz L, Yan Y., Benoit A., Albino F., Bouygues P., Giffard-Roisin S., Pinel V., Exploring Deep Learning
for Volcanic Source Inversion, IEEE Transactions on Geosciences & Remote Sensing.
– Petersen, B. K., et al. (2019). Deep symbolic regression: Recovering mathematical expressions from data
via risk-seeking policy gradients. arXiv preprint arXiv:1912.04871.
Profil du candidat :
Formation et compétences requises :
Adresse d’emploi :
LISTIC, 5 chemin de bellevue, 74944, Annecy le Vieux, France.
Document attaché : 202510221322_stage_regressionsymbolique_2026.pdf

