Modélisation hybride d’arbre fruitier en 3D associant structure-fonction et deep-learning – Application à la conception de vergers agro-écologiques

When:
30/11/2025 – 01/12/2025 all-day
2025-11-30T01:00:00+01:00
2025-12-01T01:00:00+01:00

Offre en lien avec l’Action/le Réseau : – — –/– — –

Laboratoire/Entreprise : UMR AGAP Institut, CIRAD, Montpellier
Durée : 3 ans
Contact : frederic.boudon@cirad.fr
Date limite de publication : 2025-11-30

Contexte :
Les modèles structure-fonction (FSPM) permettent d’analyser finement le fonctionnement et la croissance des plantes dans des environnements fluctuants. Ils simulent l’interaction entre la structure modulaire de la plante, sa géométrie (distribution spatiale 3D) et les processus physiologiques en interaction avec l’environnement (Prusinkiewicz, 2004 ; Fourcaud et al., 2008 ; Louarn et Song, 2020). Ses modèles considèrent que la structure tridimensionnelle des plantes constitue à la fois son interface avec l’environnement et un déterminant majeur de leur croissance et leur productivité (Costes et al., 2006). Ils sont particulièrement mobilisés pour l’étude et la modélisation d’arbres fruitiers (Costes et al., 2008 ; Allen et al., 2005 ; Lescourret et al., 2011 ; Boudon et al., 2020) où la compétition interne pour les ressources entre organes exige des représentations dynamiques et spatialisées. Toutefois, un obstacle majeur réside dans la paramétrisation de ces modèles, qui limite leur adoption pour le développement d’outils d’aide à la décision en gestion de vergers (DeJong, 2019) et, plus largement, freine leur diffusion au sein de la communauté scientifique.

La télédétection, associée aux méthodes d’analyse basées sur le deep learning, offre un fort potentiel pour caractériser le fonctionnement et la croissance des plantes, et ainsi contribuer à la paramétrisation des modèles structure-fonction. L’émergence récente de capteurs variés (caméras RGB, LiDAR, thermiques, etc.) et de plateformes d’acquisition (drones, phénomobiles, etc.) ouvre de nouvelles perspectives pour le phénotypage haut débit et le suivi des vergers. Plusieurs initiatives récentes visent à automatiser le phénotypage des arbres, mais elles se focalisent généralement sur un nombre restreint de traits, souvent insuffisant pour alimenter un FSPM de manière complète (Streit et al., 2023).

Dans ce contexte, l’objectif de cette thèse est de développer une nouvelle génération de modèles FSPM d’arbres fruitiers, hybridant les approches classiques de modélisation avec des données haut débit issues du phénotypage en verger. En s’appuyant notamment sur les projets Gardens et PHENET, l’utilisation de FSPM paramétrés par des données de phénotypage haut débit permettra de produire des jumeaux numériques et de caractériser et explorer “in silico” la résilience de systèmes agricoles.

Un enjeu majeur des approches FSPM est de pouvoir reproduire et simuler des structures topologiques décrivant l’architecture de la plante et leurs informations géométriques ou physiologiques associées, notamment issues de la télédétection. Ces structures peuvent être décomposées en séquences qui représentent par exemple la ramification le long des axes de la plante. Des méthodes statistiques dédiées (Guédon et al., 2001) ont été développées par la communauté scientifique pour pouvoir analyser et simuler ces séquences. Récemment, les grands modèles de langage (LLM) ont connu une évolution remarquable, révolutionnant le traitement du langage naturel et trouvant des applications dans divers domaines scientifiques. Ils reposent principalement sur des architectures de réseaux de neurones avancées, parmi lesquelles les Transformers (Vaswani et al., 2017) jouent un rôle central. Contrairement aux modèles séquentiels classiques comme les RNN (Recurrent Neural Networks) ou les LSTM (Long Short-Term Memory), les Transformers exploitent un mécanisme d’attention permettant de traiter les données en parallèle plutôt que de manière séquentielle. Ce mécanisme, dit Self-Attention, pondère l’importance de chaque élément dans une séquence par rapport aux autres, améliorant ainsi la capture des dépendances à longue portée dans une séquence. Par ailleurs, d’autres approches comme les Autoencodeurs Variationnels (VAE) (Kingma & Welling, 2013) sont également utilisées dans certains modèles de génération, notamment pour apprendre des représentations latentes structurées du langage. Ces approches ouvrent des perspectives prometteuses pour leur application en modélisation FSPM, notamment en facilitant l’apprentissage et la génération automatique de structures arborescentes représentant l’architecture des plantes.

Sujet :
Lors de la première étape, ce projet s’appuiera sur des modèles FSPM existants dans la plateforme libre OpenAlea, tels que MappleT (pommier), dans lesquels la structure des arbres est modélisée par des processus stochastiques (p. ex. semi-chaînes de Markov cachées) calibrés à partir de relevés de croissance dont l’acquisition et l’analyse sont coûteuses en temps et en expertise. Une première étape de la thèse consistera à étendre un modèle d’arbre FSPM en générant la structure arborescente à l’aide de “Large Language Models” (LLM), notamment des réseaux Transformers ou des Variational Autoencoders (VAE), afin de générer la succession des organes et leurs types associés. Les observations et les sorties des modèles statistiques déjà calibrés serviront à entraîner et à paramétrer ces réseaux.

Une deuxième étape sera de simuler un modèle FSPM d’arbre fruitier contraint par des données LIDAR, issues des projets PHENET (pommier) et Gardens (citrus). A partir de ces scans, des structures topologiques augmentées d’information géométriques seront générées. Et les réseaux entraînés précédemment seront étendus pour permettre la génération de ces structures et de leurs informations associées. Un enjeu majeur consistera à développer des codages relatifs (paramétrisation des entités en fonction des paramètres du nœud parent) adaptés à ces informations pour garantir une génération séquentielle cohérente des éléments de l’architecture.

Enfin, dans une troisième étape, nous explorerons l’utilisation de descriptions partielles à certaines phases clés de la croissance. Par exemple, des reconstructions LiDAR pourraient être disponibles uniquement au début et à la fin d’un cycle de croissance, tandis que des observations plus approximatives (vols de drone estimant le volume global de la plante, distribution spatiale de la végétation, etc.) pourraient être obtenues à intervalles réguliers. Dans ce contexte, un apprentissage par renforcement sera utilisé pour calibrer les modèles de croissance. Ce cadre permettra d’alterner entre l’exploitation des données existantes pour optimiser la génération de la structure et l’exploration de nouvelles configurations possibles

Dans une dernière étapes, ces méthodes seront appliquées pour reconstruire un verger en 3D à partir d’informations de phénotypage (drones, LIDAR) puis de simuler des processus biophysiques difficilement observables comme l’interception de la lumière ou le stress hydrique afin d’estimer la résilience du système, la distribution des ressources dans ces systèmes (lumière, eau) et de proposer de nouveaux traits (dans notre cas représentés comme des paramètres de modèles), de nouvelles variétés, et de nouvelles conduites (densité d’arbres, taille, association d’espèces) permettant d’optimiser ces systèmes.

Profil du candidat :
Titulaire d’un master en informatique ou d’un diplôme d’ingénieur avec des compétences en deep learning et idéalement en 3D.
Programmation en Python et C/C++.
Intérêt pour la biologie et l’agronomie.

Formation et compétences requises :

Adresse d’emploi :
CIRAD, Phenomen team, UMR AGAP
Avenue Agropolis TA A-108 / 01
34398 Montpellier Cedex 5, France

Document attaché : 202510131618_these-assimilation-vf-2025.pdf