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Context
What is synthesis planning?
Finding sequences of chemical reactions to produce target molecules from
available building blocks [Cor67].
Why does it matter?
— Accelerates drug and material discovery.
— Reduces cost and lab trial-and-error.
— Enables exploration of novel molecular space.

Why is it hard?
— NP-hard : Exponential number of possible routes.
— Chemical constraints : Not all reactions are valid or feasible.

Why is it still unresolved?
— Shallow reasoning : Most models lack grounding in chemical logic.
— Template issues :

— Template-based → limited coverage, hard to extract.
— Template-free → poor generalization, overfit to seen transformations.

— Benchmark bias (USPTO [Low12]) :
— Over-represents frequent transformations.
— Misses rare or foundational reactions.
— Encourages memorization over reasoning.

Takeaway : Most systems perform well on benchmarks but fail to generate
trustworthy, generalizable, and useful synthesis routes in real-world settings.

Our Approach
We address key limitations in current synthesis planning by introducing a
method that is :
Based on generic reactions :
— We define a minimal but expressive set of generic reactions that cover

foundational and innovative chemistry : the Broad Reaction Set (BRS).
Search-based :
— We use Monte Carlo Tree Search (MCTS) to explore synthesis paths

through combinatorial application of BRS, without relying on templates
or memorized routes.

Learning-guided :
— A lightweight Q-model predicts the distance to the target molecule and

guides MCTS toward promising directions during search.

The Broad Reaction Set (BRS) [OLC+25]
We define 20 generic reaction patterns in SMARTS notation [Inc] that can
be flexibly applied across various molecules and to multiple sites within the
same molecule.
Why BRS?
— Broad coverage : Can represent all types of transformations.
— Multi-site reactivity : Supports combinatorial expansion.
— Dataset construction ready : Can generate diverse and balanced synthe-

sis datasets.
— Bridging paradigms : Combines strengths of template-based and

template-free approaches.

[ #6, #7, #8; h : 1 ] . [ O, N, F, C: 2 ] >> [ #6, #7, #8 : 1 ][ O, N, F, C : 2 ]
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FIGURE 1 – An example reaction from BRS, written in the SMARTS chemical language.

Monte Carlo Tree Search (MCTS) for Synthesis Planning
We use Monte Carlo Tree Search (MCTS) to construct full synthesis routes
from USPTO starting molecules to target products using only reactions
from BRS.
Graph structure :
— The tree alternates between molecule nodes (s) and reaction nodes (a).
— Edges represent applying a reaction or generating resulting molecules.

Search objective :
— Find a synthesis path from starting materials to the target (g) using only

BRS reactions.
— Tests the capacity of BRS to reconstruct benchmark synthesis routes.
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FIGURE 2 – Example of an MCTS search tree for synthesis planning. Molecule nodes (skn) and reaction nodes
(akn) alternate, where n denotes the depth and k the leaf index at that depth. Binary reactions require a second
reactant m. The goal is to reach the target molecule g.

Algorithm phases :
— Selection : Traverse the tree using a UCT [KS06] guided by a learned

Q-value.
— Expansion :

— At a molecule node : add applicable BRS reactions
— At a reaction node : apply it to generate product molecules

— Evaluation : Use the Q-network to estimate the distance in number of
reactions to the target molecule and turn it into a reward signal :

r(s′) = exp(−α · VQ(s
′, g))

— Backpropagation : The reward, which tells us how promising a branch
is, is passed back up the tree.

Training :
— The Q-network is first pretrained on synthetic synthesis routes created

by applying BRS reactions to USPTO molecules.
— Fine-tuning online during MCTS episodes. The Q-network (a T5 [RSR+20]

encoder + regression head) is updated using visited molecule-target
pairs through the successful path.

— The training objective minimizes the squared error between predicted
and actual steps-to-goal :

Ldist = (VQ(s, g)− d(s, g))2

Results : We divided USPTO into five estimated difficulty levels based
on synthesis route length. Note that each level includes routes of varying
lengths, and level 5 does not imply 5 reaction steps.

Difficulty 1 2 3 4 5

Success Rate 96.2% 88.7% 81.1% – –

TABLE 1 – Percentage of synthesis routes found at each difficulty level using BRS + MCTS.

Higher difficulty levels require deeper planning and involve more complex
branching, making them harder for the Q-network to generalize to, especially
since the pretraining examples only covered routes up to depth 20.
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