

A distributed data-mining software platform for extreme data across the compute continuum



# Real-time detection of Solar and Jovian radio bursts with NenuFAR: advancing astrophysical data mining with the EXTRACT project.

<u>E. Mauduit <sup>1,2</sup>, C. Viou<sup>1</sup>, L. Bondonneau<sup>1</sup>, B. Cecconi <sup>1,2</sup>, S. Aicardi<sup>1</sup>, F. Nammour <sup>4</sup>, J. N. Girard<sup>1,2</sup></u>

# Context and motivations

There is an increasing need for ultra-high-resolution radio observations with enhanced sensitivity and this has led to a surge in data volumes from nextgeneration radiotelescopes such as NenuFAR or SKA, [1,2].

- To help scientific analysis, the development of efficient tools for data management, processing, and storage optimization is important.
- The Transient Astrophysics with a Square Kilometer Array (TASKA) use case, takes advantage of the technologies developed by the EXTRACT [3] project to handle massive data streams (~100GB/hr in beamformed mode) produced by NenuFAR, one of SKA pathfinders.
- In this work we present two projects focusing on real-time detection of radio emissions :
- A1 : dedicated to Solar radio spikes, it uses the deep-learning based SpikeNet convolutional neural network, [4].
- A2 : dedicated to Jovian millisecond bursts (S-bursts), it takes advantage of a detection method based on Fast Fourier and Radon transforms, [5].

A1 - Solar bursts with SpikeNet [6]

# A2 – Jovian S-bursts detection method [6]





- ML model trained on ~100 000 samples of solar spikes (64 by 64 pixels)
- Produced segmentation masks for radio spikes in the validation set and predicted the spike characteristics, i.e. location in time and frequency, duration, spectral width and drift rate
- Bursts that are not fully in one tile can not be detected



![](_page_0_Figure_21.jpeg)

# A1 – Real-time detection with NenuFAR

![](_page_0_Figure_23.jpeg)

### Observation campaign : from 22 to 29/03/2025, 09h15-14h50, 21-84 MHz

|         | Original pipeline | TASKA-A1 pipeline |
|---------|-------------------|-------------------|
| (df,dt) | (6.1 kHz, 21 ms)  | (98 kHz, 1.34 s)  |
| Spectra | 27 GB/hr          | 0.037 GB/hr       |
| HDF5    |                   | 2.5 GB/hr         |

• SpikeNet was successfully applied to real-time observations with NenuFAR ! • 10x data volume reduction

 $\rightarrow$  Next steps for A1 are to find the best parameters to limit false alarms and optimize what is stored in the HDF5 files.

 $\rightarrow$  Next steps (ongoing) for A2 are to be able to the same with the current algorithm and to develop a CNN based on anomaly detection to enhance the detection performances.

needs.

### Conclusions and perspectives References [1] – Zarka et al. "The Low-Frequency Radiotelescope > These advancements provide an important step toward smart data filtering for next generation NenuFAR", 2nd URSI Atlantic Radio Science Meeting (AT-RASC), 2018 radiotelescopes such as NenuFAR or SKA. [2] – Dewdney et al, "The Square Kilometre Array", IEEE > It enables real-time decision-making which allows astronomers to dynamically store high-resolution data for Proceedings 97.8, 2009, p. 1482-1496 [3] - <u>https://extract-project.eu/</u> only the most scientifically valuable events while preserving lower-resolution data for broader analysis. [4] - Murphy et al, "Semantic segmentation of solar radio spikes at low frequencies", The Open Journal of Astrophysics, 2024, 10.33232/001c.120317 $\succ$ It also paves the way for "analog to information" processing, which would drastically reduce the storage [5] - Mauduit et al, "Drifting discrete Jovian radio bursts reveal acceleration processes related to Ganymede and the main aurora", Nature Communications, 2023, 10.1038/s41467-023- $\succ$ The type of emissions studied in this work require a high time-frequency resolution, but these very short 41617-8 emission are often embedded within larger slowly-varying emissions that can be studied at a lower resolution. [6] - <u>https://gitlab.obspm.fr/extract</u> [7] - https://gitlab.bsc.es/extract/extract-use-This approach helps optimizing data storage while maintaining its value for scientific analysis, thus preparing cases/taska/use-case-a/modular multicast receiver for scalable solutions in the SKA era. \* \* \* \* \* \* \* This project has received funding from the European Union's Horizon Europe programme under grant agreement number 101093110.

1 LIRA, INSU, Observatoire de Paris, CNRS, Université PSL, Sorbonne Université, Université Paris Cité, CY Cergy Paris université, 92190 Meudon, France 2 Observatoire Radioastronomique de Nançay (ORN), Observatoire de Paris, Université PSL, Univ Orléans, OSUC, CNRS, 18330 Nançay, France 3 DIO – Observatoire de Paris, CNRS, Université PSL, France 4 Ekinox, France

Follow us or www.extract-project.eu social media :

![](_page_0_Picture_35.jpeg)