A GRADUAL SENSITIVITY-BASED KERNEL TO **IMPROVE BAYESIAN OPTIMIZATION**

Lise Kastner, Bertrand Cuissart, Jean-Luc Lamotte University of Normandy, GREYC UNICAEN, CODAG, 14000 Caen, FRANCE

lise.kastner@unicaen.fr, bertrand.cuissart@unicaen.fr, jean-luc.lamotte@unicaen.fr

Context

GOAL \rightarrow identify settings that lead to productive outcomes, in a limited number of trials: not possible to test many settings (cost/time) **METHOD** \rightarrow integration of Sensitivity analysis into Bayesian Optimization

1. Bayesian optimization (BO)

A solution is to use **Bayesian optimization**:

1. Model a Gaussian Process (GP) on the observations, calculating the mean μ and standard deviation σ , for each setting e

3. GSBK : Gradual Sensitivity-Based Kernel

Automatic Relevance Determination kernel :

1. **Baseline**: $\alpha = 1$

2. The GP is defined by a **kernel covariance** function k(e, e'), which is a similarity distance between 2 settings e and e'

-Automatic Relevance Determination kernel :

$$k_{RBF_{ARD}}(e, e') = \exp\left(-\frac{1}{2}\sum_{k=1}^{m} \frac{\alpha \cdot (e_k - e'_k)^2}{l_k^2}\right)$$

where :

- $-\alpha = 1$ for the baseline kernel
- $-l_k$ is the length scale associated to the X_k parameter,
- -m is the total number of parameters.
- 3. The next setting is determined by maximizing an **acquisition** function based on 2 strategies :
 - **Exploration** : minimize the predictive variance
 - **Exploitation** : maximize the predictive mean

The **Expected improvement** function combines the 2 strategies.

2. Sensitivity-based kernel: $\alpha = S_k$ where S_k is the HSIC index of X_k .

 \Rightarrow The more sensitive a parameter is, the more it contributes to the kernel.

3. Gradual Sensitivity-based Kernel (GSBK):

 $\alpha = exp(d \cdot S_k \cdot C_k)$

where :

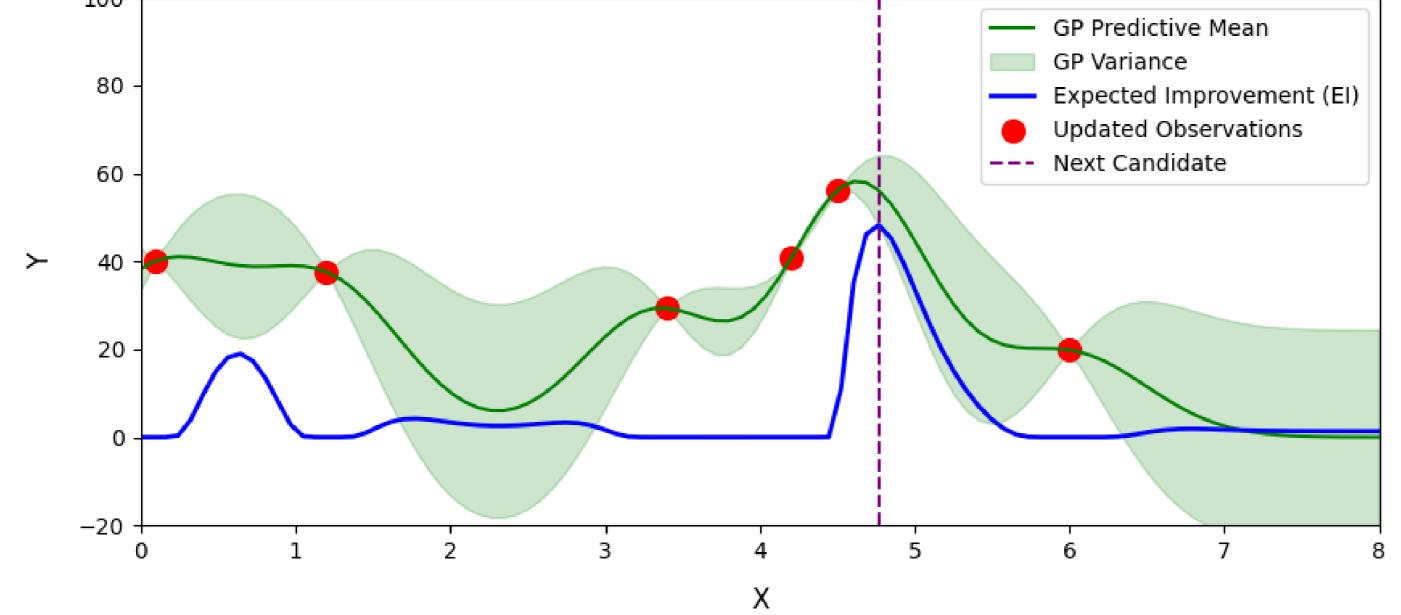
- -d is the dimension
- $-C_k$ is a **coefficient of stability** where for each variable X_k , S_{k-n} is the list of the *n* last estimated sensitivity indices of X_k .

$$C_k = 1 - \frac{\sigma(S_{k-n})}{\mu(S_{k-n})}$$

 \Rightarrow If the estimated HSIC index of X_k is high and **reliable** enough, then X_k contributes significantly to the kernel.

4. Results

 \Rightarrow Global evaluation on benchmark functions :



 \Rightarrow BO is effective but there is a need to accelerate the active learning process due to resource constraints.

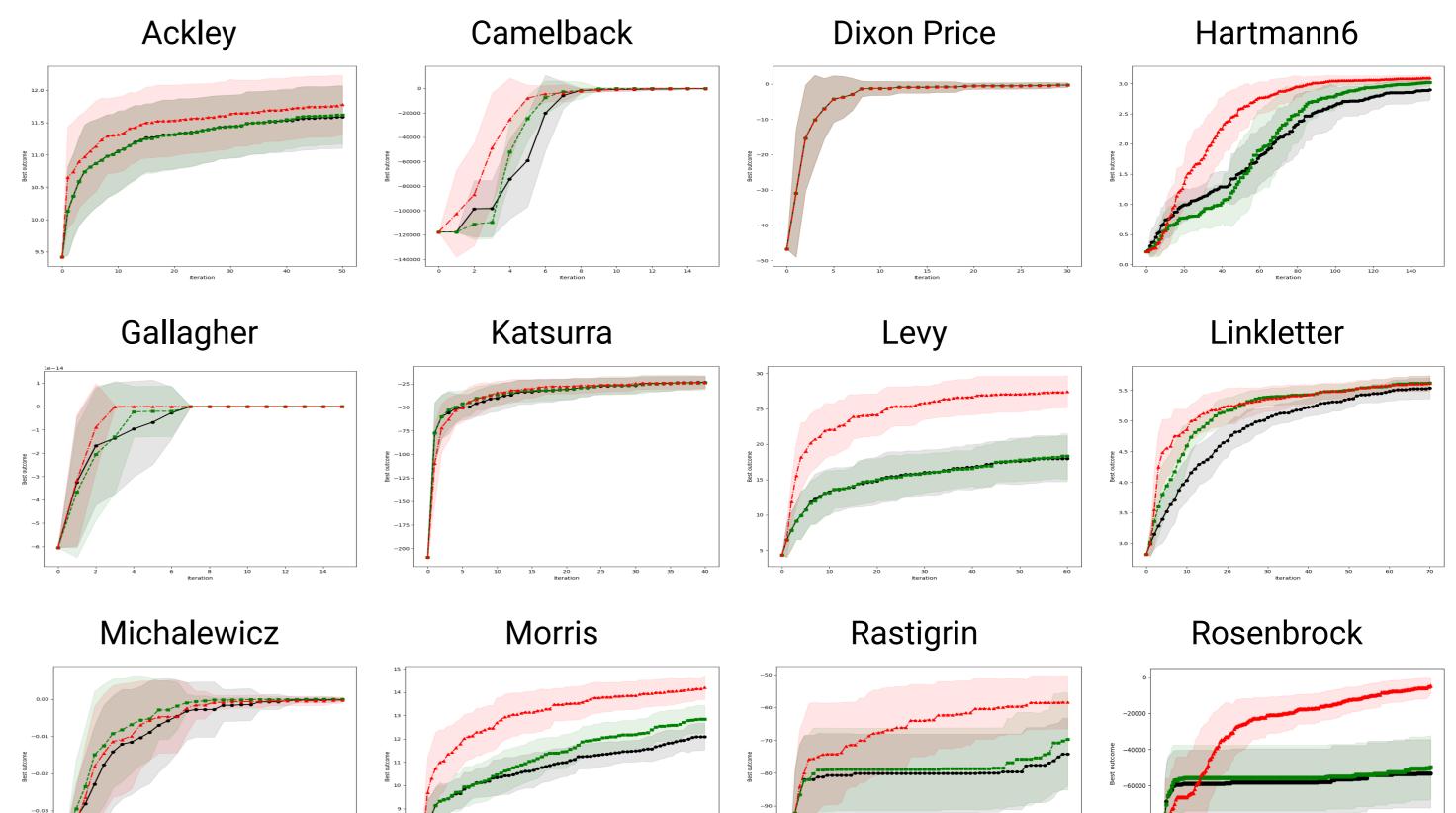
2. Sensitivity analysis

Sensitivity indices: quantifies input parameters influence on the output

The **HSIC** indices (*Hilbert-Schmidt Independance Criterion*) are used, a kernel-based method suited for problems with limited observations.

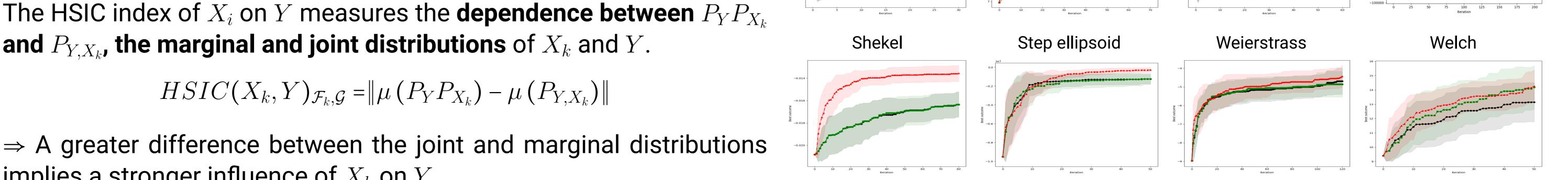
- Standard Kernel •
- Sensitivity-based Kernel
- Gradual Sensitivity-based Kernel ▲

 \Rightarrow Each point represents the mean of maximum outcome values on 100 subsets at a given iteration, surrounded by the standard deviation.



The HSIC index of X_i on Y measures the **dependence between** $P_Y P_{X_k}$ and P_{Y,X_k} , the marginal and joint distributions of X_k and Y.

 $HSIC(X_k, Y)_{\mathcal{F}_k, \mathcal{G}} = \|\mu(P_Y P_{X_k}) - \mu(P_{Y, X_k})\|$



5. Conclusion

เห่สรม

- The BO using GSBK outperforms the BO using the baseline or naive sensitivity-based kernel, depending on parameters influence.
- -GSBK proves to be particularly efficient on complex problem, while the two other methods struggle to reach the optimum.

implies a stronger influence of X_k on Y.