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Context
GOAL → identify settings that lead to productive outcomes, in a limited number of trials∶ not possible to test many settings (cost/time)
METHOD → integration of Sensitivity analysis into Bayesian Optimization

1. Bayesian optimization (BO)

A solution is to use Bayesian optimization∶

1.Model a Gaussian Process (GP) on the observations, calculating
the mean µ and standard deviation σ, for each setting e

2.The GP is defined by a kernel covariance function k(e, e′), which
is a similarity distance between 2 settings e and e′

—Automatic Relevance Determination kernel :
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where :
—α = 1 for the baseline kernel
— lk is the length scale associated to the Xk parameter,
—m is the total number of parameters.

3.The next setting is determined by maximizing an acquisition
function based on 2 strategies :

—Exploration : minimize the predictive variance
—Exploitation : maximize the predictive mean

The Expected improvement function combines the 2 strategies.

⇒ BO is effective but there is a need to accelerate the active learning
process due to resource constraints.

2. Sensitivity analysis

Sensitivity indices∶ quantifies input parameters influence on the output

The HSIC indices (Hilbert-Schmidt Independance Criterion) are used, a
kernel-based method suited for problems with limited observations.

The HSIC index of Xi on Y measures the dependence between PYPXk

and PY,Xk
, the marginal and joint distributions of Xk and Y .
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⇒ A greater difference between the joint and marginal distributions
implies a stronger influence of Xk on Y .

3. GSBK : Gradual Sensitivity-Based Kernel

Automatic Relevance Determination kernel :

1.Baseline∶ α = 1
2.Sensitivity-based kernel∶ α = Sk where Sk is the HSIC index ofXk.
⇒ The more sensitive a parameter is, the more it contributes to
the kernel.

3.Gradual Sensitivity-based Kernel (GSBK)∶

α = exp(d ⋅ Sk ⋅Ck)

where :
—d is the dimension
—Ck is a coefficient of stability where for each variable Xk, Sk−n

is the list of the n last estimated sensitivity indices of Xk.

Ck = 1 −
σ(Sk−n)
µ(Sk−n)

⇒ If the estimated HSIC index of Xk is high and reliable enough,
then Xk contributes significantly to the kernel.

4. Results

⇒ Global evaluation on benchmark functions :
—Standard Kernel N

—Sensitivity-based Kernel ∎
—Gradual Sensitivity-based Kernel ▲

⇒ Each point represents the mean of maximum outcome values on
100 subsets at a given iteration, surrounded by the standard deviation.
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5. Conclusion

—The BO using GSBK outperforms the BO using the baseline or naive sensitivity-based kernel, depending on parameters influence.
—GSBK proves to be particularly efficient on complex problem, while the two other methods struggle to reach the optimum.
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