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3 Introduction

Recent years witnessed a proliferation of AI models: modern Large Language
Models (LLMs) proved very effective to target different tasks, and there is now
a tendency to use them in a variety of domains, including education [11, 2],
healthcare [12], and recommender systems [5, 20]. Crucially, some commercial
models are available for free or for a (small) subscription fee and do not require
technical knowledge. Their widespread availability, often through low-friction
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interfaces requiring no technical expertise, has accelerated adoption in uncon-
trolled and non-standardized settings (e.g., students practising with ChatGPT).
Even though this low barrier has potential benefits, ample research documented
the biases exhibited by AI models ([7, 8, 13] among others), which can have im-
plications across application domains (job recommendations [15], resume screen-
ing [19], education [18], inter alia).
While this lowered barrier of entry is central to the democratisation of AI,
numerous studies have documented systemic and emergent biases in LLMs. To
address these issues, the field of AI fairness has evolved in recent years, and there
are now methods for bias detection and mitigation which are somewhat effective
[9]. Still, the definition of fairness can vary across domains, and models that can
be considered safe on one task might behave differently on others. Moreover,
most models align with English-centric norms and risks, which poses questions
about the cultural alignment of mitigation strategies [14, 1]. Bias detection
and mitigation should thus be performed on each task before using pre-trained
models, but this comes with an associated cost: fairness is not computationally
free [4], and current state of the art bias detection and (especially) mitigation
methods are resource intensive [16, 6, 9]. Unfortunately, the vast majority of AI
adopters have limited resources, thus being unable to implement comprehensive
bias evaluation/mitigation pipelines and relying on the mitigation performed by
the companies and research labs training commercial and open weights-models.
In practice, this contradicts the narrative of AI democratisation: while access
to AI models is indeed being democratised, access to AI safety is not – thus
creating a fairness divide.

4 Scientific goals

This project directly targets the fairness divide, with the objective of develop-
ing low-resource bias evaluation and mitigation techniques, which can be used
by small players without massive budgets to ensure the democratisation of AI
Fairness. This research defines low resource not by the availability of data for a
specific language, but by a set of technical constraints: minimal computational
cost, minimal model access, minimal (if any) model modifications, and minimal
human labour. The innovative nature of this research lies in the focus on low-
resource environments, and this three-way trade-off between mitigation cost,
bias reduction, and task accuracy – while most of previous research focused on
only two of these aspects. This project will:

• Study the feasibility of low-cost black box evaluation methods, and com-
pare their faithfulness with more computationally expensive alternatives.

• Quantify the performance-per-compute-cost curve for bias mitigation across
different tasks.

• Identify the trade-off between mitigation cost, bias reduction, and task
accuracy, for low-cost mitigation techniques.
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5 proposed approach / expected results

Primary outcome will be a low-resource fairness toolkit, providing the tools to
perform low-resource bias evaluation and mitigation on a given domain and
tasks. This tool will enable AI adopters to understand whether a given model
can be used safely and effectively in their domain, requiring limited data and
computation.

We will primarily focus on black-box models, using both commercial mod-
els (e.g., those from OpenAI, Anthropic, Google), which represent the most
common AI adoption scenario, and open-weight models (without looking at
their internal weights). In this setting, there is no access to the models beyond
API-based queries, and the internal states of the model (e.g., weights and ac-
tivations) are inaccessible, which is a significant obstacle for AI audits since it
prevents deeper analysis [3]. This research aims to circumvent this issue taking
inspiration from psychometrics: we hypothesise that the biases exhibited by the
models can be modelled as latent traits. In other words, similar to how testing
theories (such as Item Response Theory [10]) estimate the skill level of a learner
by observing the correctness of their responses to exam questions, we will quan-
tify the latent trait representing the bias exhibited by a model by observing its
responses to different requests. Low-resource evaluation can then be performed
in an analogous way to Computerised Adaptive Testing [17]: by picking the
“right” questions, it is possible to obtain an accurate measurement of the latent
trait with a fraction of the number of responses.

Then, we will be study low-resource mitigation techniques, focusing on
training-free methods, that can be implemented during inference or as external
modules, thus offering a lightweight and accessible approach to bias mitigation
and AI safety (in contrast to computationally expensive alignment techniques
which alter the model’s weights). We will experiment on a variety of techniques
at both pre-inference (the input to the model is automatically edited to min-
imise the risk of biased responses) and post-inference (the text generated by the
LLM is automatically edited before delivering it to the end user) stage.

6 Future Prospects

Once completed, this low-resource fairness toolkit has the potential to support
AI adopters in ensuring that they use these models safely, thus working towards
the democratisation of safe AI, instead of the democratisation of unsafe AI.
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