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2 Scientific context

Principal component analysis (PCA) is a workhorse in linear dimensionality reduction [Jol02]. It is widely applied in
exploratory data analysis, visualization, data preprocessing). Principal components are usually linear combinations
of all input variables. For high-dimension data, this may involve input variables that contribute very little to
the understanding. Finding the few directions in space that explain best observations is desirable. Sparse PCA
overcomes this disadvantage by finding linear combinations that contain just a few input variables, by adding
sparsity constraints [ZX18, CR24]. One of such is formulated (cf. lasso) with the help of an absolute norm
penalty/regularization. In [MBPS10], one designs this matrix factorization problem as:

min ∥X −Dα∥2F + λ∥α∥1,1

where: X = [x1, . . . , xn] is the matrix of data vectors; D is a square matrix from a suitable basis set, ∥ · · · ∥F denotes
the Frobenius norm; ∥ · · · ∥1,1 denotes the sum of the magnitude of matrix coefficients.

A penalty such as ∥ · · · ∥1,1 is 1-homogeneous (∥aα∥1,1 = |a|∥α∥1,1). This may only weakly emulate the sheer
count of non-zero entries of a matrix, that would be scale-invariant or 0-homogeneous. Recently, the SOOT/SPOQ
family of penalties has been developed, as smooth emulations to the scale-invariant ℓp(·)/ℓq(·) norm ratios. The
latter had been used for a while, as stopping-criteria, penalties or “continuous” sparsity count estimators [HR09].
They have been used successfully for the restoration/deconvolution/source separation of sparse signals [RPD+15,
CCDP20, ZCD23]. The goal of this subject is to:

• investigate potential derivations using SOOT/SPOT penalties,

• implement the algorithmic work-flow in a scientific toolkit (eg scikit-learn),

• benchmark it against competing methods.
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