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Context

Artificial Intelligence, with the advent of Deep Learning [1], has recently enabled
spectacular advances in various fields of scientific research. It is now currently used in
fields such as chemistry and molecular biology, astrophysics, particle physics, health
science, etc. The aim of this post-doctoral position is to explore some possible appli-
cations of Deep Learning to materials science [2].

Structure and properties of polycrystalline materials

Developing new materials, such as high-performance metals and alloys, presents
many challenges [3]. One of these is to determine the macroscopic mechanical pro-
perties of a material (for instance its ductility) by studying its microscopic structure
(atomic composition and structural organization).

In this work, we focus on a specific class of materials, called polycrystalline ma-
terials. These materials are made up of millions of invisible grains (ranging in size
from a few nanometers to several hundred). Each grain is a regular atomic lattice
that can exhibit different symmetries. Neighboring grains differ in shape and spatial
orientation (Euler angles). Grain organization determines the material’s macroscopic
mechanical properties.

When a load (tensile stress) is applied to a material sample, each grain undergoes
a stress which results of the interaction stresses produced by its neighbors in order to
maintain the cohesion of the sample. To release this mechanical stress, grains have
to deform through atomic slippage in the atomic lattice. These slides are likely to
leave defects within each grain, known as dislocations.

To study these deformations, materials researchers have different tools at their
disposal : they can for instance produce highly detailed images of grains (Euler
maps) using electron microscopes (Scanning Electron Microscopes (SEM)). These
maps reflect the position, shape and spatial orientation of each grains on the surface
of a material [4].



Materials scientists can also rely on numerical simulations using 3D physical
models to predict the material’s response to stress. These models depend on a number
of parameters that need to be specified by the scientists prior to simulation.

These tools are not without their drawbacks. Experimental studies using electron
microscopes are very time-consuming. This limits the amount of data that can be
acquired. Similarly, physical models require complex partial differential equations to
be solved, resulting in very long computation times (many hours).

A research problem in deep learning

The aim of this thesis is to develop new tools based on deep learning techniques
to help materials scientists in their research.

A first research direction would be to use classical neural networks as a comple-
ment to existing physical models to predict material deformation at the microscopic
level. More precisely, an Euler map of the unloaded sample is provided to the predic-
tive model along with the magnitude and direction of the applied load. As a result,
the neural network estimates the Euler map of the same sample after deformation.
Convolutional neural networks (CNN), the U-Net architecture [5] and spatial trans-
former networks [6] seem well suited to this task, since Euler maps are numerical
tensors.

However, this classical approach does have a drawback. The predictive model
is built without any a priori knowledge of physical laws governing the constitution
of materials. These fundamental laws must therefore be rediscovered by the model
during its learning phase. This requires a very large volume of data, the availability
of which is not necessarily compatible with experimental reality.

One possible way of overcoming this obstacle is to use a new class of neural
networks, called Physics-Informed Neural Networks (PINN) [7]. For a PINN-type
network, the architecture of the model is no different from that of a classical network.
However, the error function used during the training phase, is adapted to inject a
priori knowledge of physical laws into the model. More precisely, the error function is
the sum of two terms : one term that measures how well the model fits experimental
data (as in a classical neural network), and a second term that measures how well
the model conforms to physical reality. One of the advantage of PINN networks, is
that they require a smaller volume of data than classical approaches.

Required work

1. state of the art on deep learning applied to materials science
2. development of neural predictive models

3. the design of these models will be guided by knowledge acquired in materials
science

Required Skills

— thesis in computer science, with skills in machine learning and data science
— Proficiency in Python and Pytorch/Tensorflow
— skills in materials science would be a plus



Additional information

— the postdoctoral researcher will be part of the team for the MAMIE NOVA
project (Machine LeArning for MIcromEchanics : A NOVel Approach), which
is funded by the ANR (National Agency for Research)

— two research laboratories are involved :

— LORIA laboraty (Laboratoire Lorrain de Recherche en Informatique et
ses Applications) - team Orpailleur

— LEMS3 laboratory (Laboratoire d’Etude des Microstructures et de Méca-
nique des Matériaux)

— a team of supervisors from computer science and materials science
— Brieuc Conan-Guez (MCF - LORIA), Frédéric Pennerath (MCF - LO-

RIA), Lydia Boudjeloud-Assala (PR - LORIA)
— Antoine Guitton (PR - LEM3) - Vincent TAUPIN (CNRS - LEM3) -
Benoit BEAUSIR (MCF - LEM3)

— location : LORIA - Metz, CentraleSupelec

— remuneration : project MAMIENOVA

— duration : 2 years

To apply

Please send your detailed CV and a cover letter to the addresses :

— Brieuc Conan-Guez : brieuc.conan-guez@univ-lorraine.fr

— Frédéric Pennerath : frederic.pennerath@centralesupelec.fr

— Lydia Boudjeloud-Assala : lydia.boudjeloud-assala@univ-lorraine.fr
— Antoine Guitton : antoine.guitton@univ-lorraine.fr

Recommendation letters are not required, but please include the contact information
of your references. You can also provide a published article on machine learning.
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