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1 Context
As a number domains and industries go through a digital transformation, one can

observe a constant creation of demand for programmers. While these industries face a
shortage of available software developers, the programming tasks are very specific : they
require specific domain knowledge and only a modest level of programmings skills. Even
this is an important phenomenon, and a basic programming skill would be desirable for
the majority of professions of the 21st century, the public education curricula do not
address this problem sufficiently. Certain industries face a shortage of available software
developers and this problem is likely to increase.

A number tools 1 -often based of artificial intelligence- are available to address this
problem and enable people with no or little programming skills to become productive
developers. Recently, a number of AI-based tools -ChatGPT, Copilot, CodeClippy 2, etc. -
emerged that enable to generate code in different programming languages, out of natural
language. These tools could largely improve the productivity of software developers, but
to make use of these tools, one still needs competences in programming languages and
an understanding of the generated code.

This thesis aims to develop methodologies and tools that can enable or support do-
main specialists to engage in activities that result executable software. Specifically, we
envisage that they not only describe their programming tasks in natural language but
they test, and debug their software in natural language, without interacting with the
code itself. We would like to develop tools and methodologies to realise this vision in two
different use cases.

2 Objectives
We would like to develop a methodology to develop domain specific applications in

natural language. The methodology should include the following aspects :
— Program synthesis : Generating code out of natural language descriptions to a

specific target environment
— Guiding the developer in the writing phase : We would like to develop methods

to guide the developer to improve the provided textual description of the task if
the provided text description is not sufficiently precise, to generate a code.

1. https://cacm.acm.org/news/263950-no-code-ai-platforms-and-tools/fulltext
2. https://github.com/CodedotAl/gpt-code-clippy/wiki
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— Guiding the developer in the testing/debugging phase : We will develop methodo-
logies to correct the generated program, without specific coding skills. In particular
if the the developers discover some unexpected behaviour of the executed code,
they should be able to modify their description. For this they also need guidance
how to change the original text. Potentially, they interact with a visual represen-
tation of the code rather than the original text, but they should be able to change
the code to correct the behaviour of their software.

We plan to develop methodologies and tools for two use cases : autonomous vehicles
simulation software testing. In both of the scenarios the goal is to develop simple software
with low complexity that requires only basic programming skills, but specific domain
knowledge.

2.1 Autonomous vehicles test scenarios

In this use case, we will focus on the use case of autonomous vehicles, where one needs
to develop test scenarios for the driving licence of the autonomous vehicles. These sce-
narios are described in a well-defined, standard language the OpenScenario 3 and Open-
Road 4. These scenarios can be executed using a scenario execution software, that gene-
rates a visual presentation of the defined scenario.

2.2 Software testing

In this use case we would like to develop methods and tools to support software
testing. The goal is to obtain executable test scripts out of natural language descriptions
of test scenarios. If the resulting test script does not correspond to the intended scenario,
we user should have guidance and suggestions how to modify the text input describing
the task to get the desired results.

3 Research questions
Program synthesis [8] is a research domain that aims to develop methods that can

synthesize executable code out of high level descriptions and domain specific languages
(DSLs). Researchers have proposed a variety of methods, including the use of satis-
fiability or SMT solvers, reasoners, and also evolutionary computing. The most recent
and advanced methods are based on the technique of neurosymbolic programming [4].
These techniques enable to combine symbolic methods to assure that the hard (and soft)
constrains that correct synthesized software are satisfied, with (neural network-based)
machine learning. Some important contributions in this area include [2], [5], [6], [13],
[14], [16], [1] , [10]. Some of the neurosymbolic programming systems are available as
open source projets, including Dreamcoder (Ellis et al. [7]).

Our planned work will use neurosymbolic techniques. While these methods enable to
realise powerful tools, they do not address several points that are very important in our
context :

3. https://www.asam.net/standards/detail/openscenario/
4. https://github.com/The-OpenROAD-Project
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— Interaction. We would like that the user can interactively influence the generation
process. While some papers propose interactive synthesis, such as [18], they assume
that the developer understands the synthesised code, while we would like that the
interaction is based on natural language. Phrases in natural language could have
to much ambiguity to define programming tasks. When we would like to guide
the programmer we might need to rely on a different representation. This could
be for example a description of the scenario in a controlled language [12], or
other representation that is easy to understand. We would like to avoid that the
developer has to ready the code itself.

— Guiding the expert in the programming phase can require a number of methods,
including the identification of ambiguous parts of the programs. Other techniques
could involve proposing auto-completion techniques. Auto-completion techniques
are widely used in different areas such as in information retrieval [3], in (graph)
databases [17]. We propose specific auto-completion mechanisms for this form of
software development. In this context, auto-completion should take into account
the specific constraints of the domain. In our work we would like to enable de-
velopers define certain domain knowledge in form of constraints. We would like
exploit these constraints to generate the auto-completion options. Methods for
generating auto-completion suggestions -in the presence of constraints- might in-
clude probabilistic reasoning [15] or machine learning based techniques. Examples
for the use of these techniques in other domains include [9] or [11].
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