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Background
Brain diseases emerge from perturbations of biochemical processes, such as local variations in the
concentration of some molecules. Identifying potential treatments (i.e. active drugs) thus requires to
understand the sources of dysfunctions at the microscopic scale, which is challenging. First, biological
systems are highly complex: they are nonlinear, include unobserved variables, their dynamics occurs on
multiple  interdependent  spatial  and  temporal  scales,  and  the  physical  principles  that  govern  their
dynamics  are  partly  unknown.  Second,  data  are  scarce  and  some  parameter  spaces,  notably  for
processes  occurring  in  nanoscopic  sub-cellular  domains,  cannot  be  reached experimentally.  In  this
context, mechanistic spatially-extended stochastic models are essential to capture the complex chemical
interactions  that  underlie  the  functioning  of  brain  cells.  Notably,  they  are  useful  to simulate  the
mechanism of action of a candidate drug, i.e. its interactions with its cellular targets and its impact on
cell dynamics. As this approach is resource and time demanding, it cannot be used to simulate brain
dynamics  at  larger  spatio-temporal  scales,  thus hindering its  ability to  predict  whether the drug of
interest is likely to treat the disease. A tool that links such fine-grained microscopic models of drug-cell
interactions with brain dynamics at higher temporal and spatial scales is thus of high interest in the
search for therapies for brain disorders, yet is currently lacking.

Recently, data-driven machine learning approaches have emerged as tools of interest to address this
challenge.  These  include  physics-informed  neural  networks  [1,2],  observation-based  model
parametrization methods [3] or data-driven equation discovery [4-9]. The latter aims at establishing a
mathematical model, expressed in the form of partial/ordinary differential equations, that describes an
observed system that is constrained by hidden physical laws. By identifying both the structure of the
equations and parameter values, this approach has the advantage of being explanatory, providing a
physical interpretation of the mechanisms that govern the dynamics of the modeled system. This is one
of  the  major  assets  of  this  technique  compared  to  approaches  that  provide  descriptive  black-box
models.  Representative  equation  discovery  algorithms  include  DeepMoD  [4],  D-CODE  [5],  D-
CIPHER [6], SINDy [7], PDE-Find [8] or WSINDy [9]. 

The main limitation of the state-of-the-art equation discovery methods is the strong assumption of a
uniform field on the whole domain (spatially and temporally). However, a cell is a biological system
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with localized features, where molecular processes are affected by the topology of the cell itself. For
example, interactions at the center of the cell differ from those that occur close to the cell membrane
because of distinct diffusion constraints. Local sites of inter-cellular communication can also result in
heterogeneous  distributions  of  molecules  within  the  cell  (e.g. “injection”  sites).  These  spatial
inhomogeneties  (e.g. variability  of  cell  shape,  border  conditions  and  punctual  sources)  are  thus
important to take into account to model the internal functioning of cells.  There is thus a need for
equation  discovery  methods that  capture the complex spatial  heterogeneities  inherent  to  biological
systems.

Objectives, challenges & novelty
The goal of this PhD project is to develop a data-driven partial differential equation (PDE) discovery
method for complex dynamical  systems such as brain cell.  The algorithm will  be evaluated on its
ability to robustly and accurately learn cell function at the macroscopic scale from data simulated at the
nanoscopic level. The simulated data will be obtained from agent-based models of biochemical reaction
kinetics developed in the team (such as [10]), that account for the intracellular movements of individual
molecules and ions, their interactions, as well as their modulation by cellular spatial heterogeneity.
These simulators are partly stochastic (initial conditions, Brownian motion, probabilistic reactions upon
encounter) such that the same parameter set can be used to generate large collections of data. 
As those models are not based on differential equations, a major challenge of this project will be to
evaluate the discovered equations,  as the ground-truth equations are only known for a few simple
biochemical  reactions.  For  more  complex  biological  processes,  the  discovered  equations  will  be
evaluated based on their ability to predict the dynamics of the system accurately. 
The novelty of this project compared to the state-of-the-art methods is that the algorithm will learn
from in silico data. This is a strong asset as it provides more flexibility to generate complex datasets
with various spatio-temporal properties and lifts constraints on data availability. 
This project, by providing innovative numerical approaches to learn explanatory mathematical models
of  brain  cell  dynamics,  is  an  important  milestone  in  the  global  effort  to  build  digital  twins  for
neuroscience. 

Candidate profile
We are looking for a student with a Master degree who has experience in at least one of the following
areas:  data  science/machine  learning/mathematical  modeling  as  well  as  an  interest  in  cell
biology/neuroscience.
Proficiency in written and oral English is required. No knowledge of French is needed.
Most importantly, we are looking for future colleagues who are eager to learn and grow, and who are
driven by scientific curiosity.

How to apply
Applicants should submit the following documents to the team of supervisors by June 26th: :

• A CV
• A one-page statement presenting your interests and goals
• The contact information of at least 2 referees

Candidates  are  welcome  to  contact  the  project  supervisors  if  they  have  questions  regarding  this
position.

Contact information of the supervisors :
Hugues Berry: hugues.berry@inria.fr
Audrey Denizot: audrey.denizot@inria.fr 
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Thomas Guyet: thomas.guyet@inria.fr
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