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Introduction and Background.  
 
Multivariate time seriesi (MTS) analysis such as Classification, Forecasting, and Anomaly Detection 
are omnipresent problems in many scientific domains. In this context, several state-of-the-art 
solutions to these problems adopt deep learning architectures such as CNN [ea20] (Convolutional 
Neural Network), LSTM [LGYC20, Pha21], GRU [SZN+19], and Transformer [VSP+17] (attention 
mechanism). 
We note that these techniques typically exhibit shaky performance according to the analyzed data 
[FMBM21, GZS+21]. Hence, in order to adopt these algorithms, users first require to have a 
profound understanding of the data, which is finally validated by the correct interpretation of the 
analysis results. 
 
In the last two or three years, we have witnessed a consistent effort to provide automatic 
explainability in deep learning models, which is the capability to highlight the feature sub-spaces 
that drive an algorithm toward a certain decision. Several works have tried to adapt explainability 
techniques natively used for images to MTS analysis. In this sense, we note that such adaption does 
not properly address the requirements of temporal data interpretation. 
 
Specifically, several techniques such as Temporal Saliency Map [PHC] and MTEXCNN [AGBS] can 
provide the user with the spatio-temporal feature regions that characterize the class assignment of 
the adopted model. On the other hand, we note that these solutions cannot provide a global 
temporal explanation, namely, they can solely explain instances that are classified in a fixed time 
window. In this sense, many applications as predictive maintenance, supply-chain management, 
medical prognosis or urban crime prediction, and others require fully-fledged temporal 
explanations that reveal interesting temporal relationships among multiple univariate random 
variables. 
 
Objective. 
 
Time series data analysis naturally aims to discover complex events dependencies, namely 
temporal and inter-variable relationships that occur globally, e.g., anomaly root causes, variation 
of repeated patterns that fully describe the evolving structure of the data [ZINK19].  
 
To that extent, the Ph.D. candidate will work towards the proposal of new models that can address 
the requirements of MTS analysis and are capable to explain the produced decisions. In a cognitive 
sense, a model must explain phenomena by appealing to their temporal relations rather than 

https://www.etis-lab.fr/midi/


providing independent and unrelated explanations in separated time frames (as it is the case of 
current solutions). 
 
Proposed Methodology.  
 
We aim to design solutions for deep learning models that are able to leverage Complex Networks 
learning ( e.g., Long-Run Variance Decomposition Networks [ea18]) and causality models such as 
Dynamic Bayesian Networks [SVC21, Mor21] , which effectively model complex events relations 
through graph structures. Specifically, we want to study both ante-hoc (integrated into the model) 
and posthoc (applied to the final results) explainability. Furthermore, we aim to extensively study 
and assess the applicability of our solutions in different heterogeneous use cases which call for 
effective results interpretability of MTS analysis (e.g., remote sensing, supply chain, climate data, 
and healthcare). 
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i Multivariate time series are sets of one-dimension variables (a.k.a metrics), namely sequences of 

real values recorded along time at a fixed interval rate. 
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