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Context: Recently, with the emergence of Industry 4.0 (I4.0), predictive maintenance (PdM) based
on data-driven methods has become the most effective solution to address smart manufacturing and
industrial big data, especially for performing health perception (e.g. fault diagnosis and remaining
useful life (RUL) estimation) [7, 18]. Here, maintenance corresponds to the process that deals with
equipment or system components to ensure their normal operating under any circumstance. PdM
relies on the continuous monitoring of the equipment or the machine to predict when maintenance
actions are necessary; hence the maintenance can be scheduled [22]. Detecting and preventing failures
is thus essential, and industries seek to minimise the number of operational failures, minimise their
operational costs, and increase their productivity.

The general workflow of data-driven PdM system consists of the following three subprocesses:

1. Data acquisition and pre-processing. The first step is to collect a large set of sensor data
representing healthy and faulty operation. These raw data are then preprocessed to bring it
to a form from which features can be easily extracted.

2. Features extraction. The next step is to identify features that help distinguish healthy conditions
from faulty, on the basis of historical sensor data.

3. Model training and predicting. The last step consists in using the extracted features to train a
machine learning model that can (i) detect anomalies; (ii) classify different types of faults; or
(iii) estimate the remaining useful life (RUL) of equipment.

The increased availability of large volumes of operational data, collected from various sensors over
time, has paved the way for the development and deployment of the data-driven PdM, which utilises
prediction tools to provide valuable information regarding the status of equipment [23]. According
to [14, 15], the most common data collected from sensors are vibration, temperature and electrical
signal. However, performing predictive maintenance in such continuously changing temporal data
(aka time series data) has become a major challenge which received increasing attention from both
the industry and the scientific community.

Failure Prediction is one of the critical components of PdM for which the main goal is to predict
the approximate moment when some failure could occur. Recent works have addressed anomaly
detection for PdM in order to predict incipient failures from historical data [10, 19]. In the context
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of condition monitoring, this is interesting because anomalies can tell us something about the “health
state” of the monitored equipment [6]: Data generated when the equipment approaches failure, or
a suboptimal operation, typically have a different distribution than data from “healthy” equipment.
Machine learning techniques (ML) emerged as a promising tool to achieve this goal. However, the
current use of ML is mainly focused on supervised learning, which means that data sets need to be
labelled, that is the data must be annotated with the true machine health condition. Accordingly,
learning with unlabelled data, namely unsupervised learning, is the focus of this internship.

In the last decade, new research have began connecting data mining to symbolic Artificial In-
telligence (AI). Such fertilization leads to a number of algorithms that have been proposed within
Constraints Programming (CP) and Satisfiability (SAT) for mining sequences [1, 16], frequent item-
sets [11, 17, 20], association rules [2, 12], clustering [5, 8], classification [9, 21], etc. The main advantage
of symbolic AI approaches for pattern mining is their declarativity and flexibility, which include the
ability to incorporate new user-specified constraints without the need to modify the underlying system.
Within CP, existing work on extracting quantitative pattern in the context of time series constraints
was initialy done in [3]. The work was recently adapted to the context of sliding time-windows [4].
To the best of our knowledge, there exists no work that exploits CP for PdM.

Objective: The objective of this internship is to use constraint programming to apply symbolic
data mining techniques on historical data to characterise the healthy behaviour of equipment. We
will consider especially symbolic data mining techniques applicable to time series data where data
are generated in streams. The extracted patterns will then serve to form a knowledge base to detect
abnormal or uncertain behaviour in new data. To detect anomalies in newly monitoring data, con-
cordance and discordance metrics will be defined and exploited to compute an anomaly score on the
basis of the previously obtained knowledge.

The internship will address the two following principal tasks:

• Knowledge discovery process about normal behaviour;

• The anomaly detection in new data.

Candidate : We are looking for a motivated Engineering School or Master’s degree candidate in
Computer Science who is motivated by constraint programming and machine learning fields. Good
programming abilities will be required.
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