Construction and exploitation of an historical knowledge graph to deal with the evolution of ontologies

Silvio Domingos Cardoso, Chantal Reynaud-Delaître, Marcos Da Silveira, **Cédric Pruski**

Journées RoCED, 6th-7th of July 2021

PROBLEMATIC

Ontology evolution management

- More and more smart applications rely on ontologies for their modelling and reasoning capabilities
 - Ex: BBC, PubMed, Elsevier, Google, Amazon, Dynaccurate ...
- But ontologies evolve over time mainly for knowledge evolution purposes
 → New ontology versions are regularly published
- Tools exist to access these various ontology versions but evolution links (between entities of successive versions) are never specified

We propose a Knowledge Graph that contains all versions of ontological concepts with an explicit specification of the evolution link between these concepts

KNOWLEDGE GRAPH CONSTRUCTION

From a pragmatic point of view

- 1. "Cleaning" of the initial version
 - A. Identification of concepts
 - B. Construction of the hierarchy
 - C. Definition of validity start date
- 2. For each new version:
 - A. Identification of concepts that are added, modified, deleted using DynDiff
 - B. Update of the graph including:
 - i. The identified concepts
 - ii. Validity date (start and end date)

Historical Knowledge Graph

A tool for efficient ontology/KG diff computation

6

DYNDIFF

Evaluation

Acronym	Versions (#)						
		С	Р	I	R	А	
CIDO	01262020 - 06142020 (14)	3,599	165	294	15,368	25,407	Aatcher testing
ICD9CM	2005AA – 2016AA (12)	21,765	2	0	21,765	54,572	J
MESH	2005AA – 2016AA (12)	25,820	2	0	34,899	215,971	→ Middle-sized
GO	01072017 - 21072020 (4)	52,574	54	0	492,651	395,285	Parsed from OBO
NCIT	2005AA – 2016AA (12)	70,396	2	0	79,525	179,983	
IOBC	1.0.0 - 1.4.0 (7)	115,114	84	59,346	707,970	904,443	Large-sized
SNOMEDCT	2005AA - 2016AA (12)	309,572	2	0	15,368	25,407	J

Average number of concepts **C**, properties **P**, instances **I**, relationships **R** and attributes **A**

Evaluation (2)

Model formula:	Algorithm*(x^5 + x^4 + x^3 + x^2 + x)
R-Squared:	0.740068
p-value (significance):	< 0.0001

UTILISATION OF THE HKG

Maintenance of semantic annotations

• A semantic annotation is the association of a concept from an ontology with a piece of digital information (e.g. text, image, video ...)

- Use of HKG for detecting and updating outdated semantic annotations
- Corpus of 500 annotations produced at 2 different moments in time (2009 et 2016) with NCIt, ICD-9-CM, MeSH and SNOMED CT validated by domain experts
- Comparison of the maintenance task using our HKG with existing method using background knowledge given by BioPortal

EVALUATION

For detecting invalid semantic annotations

EVALUATION

Migration of invalid semantic annotations

	ICD-9-CM	MeSH	NCIt	SNOMED CT
Method	AUC	AUC	AUC	AUC
BK	0.597	0.545	0.663	0.75
KG	0.593	0.545	0.615	0.74

 The Area Under the Curve (AUC) denotes the probability to take the good decision for a correct migration independently of the considered invalid annotation

... and perspectives

- Proposal for the construction and exploitation of a KG allowing the management of the evolution of the concepts of an ontology over time
- Evaluation of the KG for the maintenance of semantic annotations directly impacted by the evolution of the underlying ontology
- Limitations:
 - HKG deals with concepts only
 - The relationship "evolveTo" is too generic
- Exploitation of the HKG for other use-cases:
 - Information retrieval

Cardoso, S. D., Da Silveira, M., & Pruski, C. (2020). Construction and exploitation of an historical knowledge graph to deal with the evolution of ontologies. *Knowledge-Based Systems*, *194*, 105508.

Thanks!

Cedric.Pruski@list.lu