

Raisonnement embarqué et distribué pour le Web des Objets

Projet CoSWoT

Alexandre Bento, Lionel Médini, Kamal Singh, Frédérique Laforest

Plan

- CoSWoT
- Raisonnement à base de règles
- Vers un raisonnement embarqué
- Vers un raisonnement distribué
- Conclusion

Contexte et objectifs : le projet CoSWoT

Développement et exécution d'applications intelligentes et décentralisées pour le WoT, malgré des objets contraints

Modèles de connaissances basés sur les graphes pour spécifier déclarativement :

- la sémantique des messages échangés entre les noeuds
- le domaine et la logique applicative

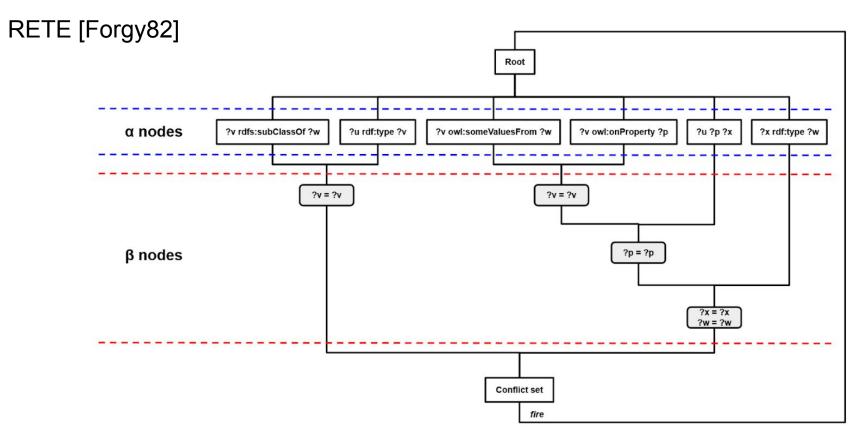
Distribuer et traiter les tâches de raisonnement au sein de noeuds hétérogènes, y compris des objets contraints en tenant compte :

- o de l'infrastructure matérielle
- des caractéristiques des objets

Plan

- CoSWoT
- Raisonnement à base de règles
- Vers un raisonnement embarqué
- Vers un raisonnement distribué
- Conclusion

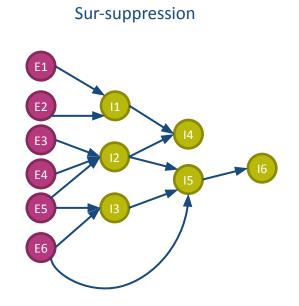
Raisonnement à base de règles


- Format RDF
 - Les faits sont des triplets <sujet, prédicat, objet> ou des quads <sujet, prédicat, objet, graphe>
- Inférence
 - Production de faits implicites à partir de règles conjonctives et de faits explicites
 - Chaînage avant : itérations jusqu'à ce qu'aucun nouveau fait ne soit produit
 - L'ordre d'application des règles n'a pas d'importance

Conditions (corps) → Conclusion (tête)

(?p a fini ses devoirs) ET (II fait beau) \rightarrow ?p peut aller marcher

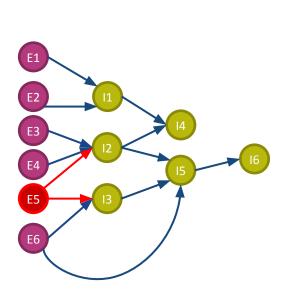
Plan

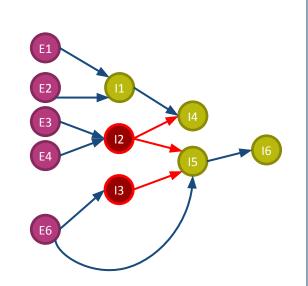

- CoSWoT
- Raisonnement à base de règles
- Vers un raisonnement embarqué
 - RETE
 - DRed
 - Backward-Forward
 - Tag-Based
- Vers un raisonnement distribué
- Conclusion

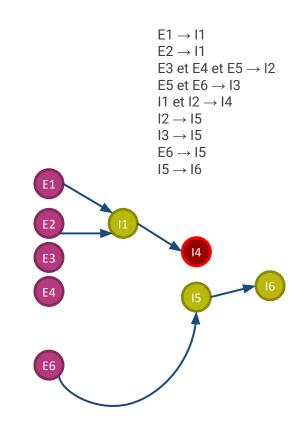
- Optimisations de RETE :
 - Classer les noeuds par sélectivité [Woensel18]
 - Construire un arbre de dépendances entre règles pour ne charger que les règles nécessaires lorsque de nouveaux faits explicites sont ajoutés [Wei15]

Delete/Rederive [Gupta1993]

- Exemple: suppression de E5

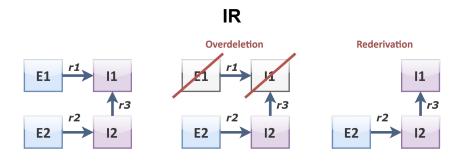



Redérivation


E1 \rightarrow I1 E2 \rightarrow I1 E3 et E4 et E5 \rightarrow I2 E5 et E6 \rightarrow I3 I1 et I2 \rightarrow I4 I2 \rightarrow I5 I3 \rightarrow I5 E6 \rightarrow I5 I5 \rightarrow I6

Backward/Forward [Motik2015]

- Exemple: suppression de E5



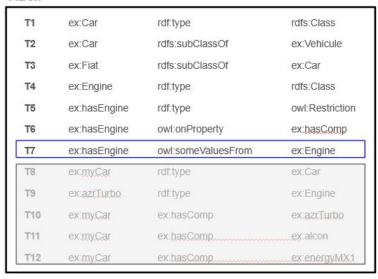


Solutions qui gardent une trace des raisonnements précédents

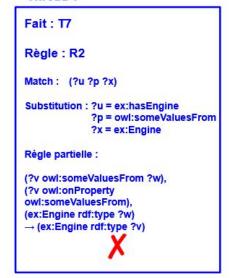
- Tag-Based Reasoning (TBR): exemple
 - Règles
 - r1 : E1 → I1
 - $r2: E2 \rightarrow I2$
 - $r3: 12 \rightarrow 11$

- Scénario
 - E1 suppression / ré-insertion

TBR


Plan

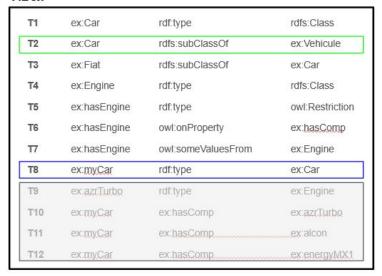
- CoSWoT
- Raisonnement à base de règles
- Vers un raisonnement embarqué
- Vers un raisonnement distribué
 - Parallélisation :
 - RDFox
 - Adaptations de RETE
 - Distribution dirigée par :
 - Les données
 - Les règles
- Conclusion


TBox

R1	(?v rdfs:subClassOf ?w),	(?u rdf:type ?v)			\rightarrow	(?u rdf:type ?w)
R2	(?v owl:someValuesFrom ?w),	(?v owl:onProperty ?p),	(?u ?p ?x),	(?x rdf:type ?w)	\rightarrow	(?u rdf:type ?v)

ABox

Thread 1



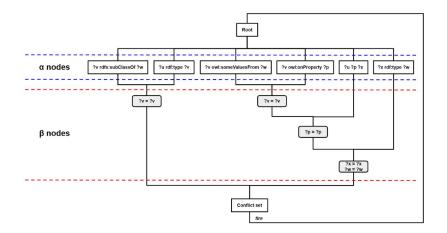
Thread 2


TBox

R1	(?v rdfs:subClassOf ?w),	(?u rdf:type ?v)			\rightarrow	(?u rdf:type ?w)
R2	(?v owl:someValuesFrom ?w),	(?v owl:onProperty ?p),	(?u ?p ?x),	(?x rdf:type ?w)	\rightarrow	(?u rdf:type ?v)

ABox

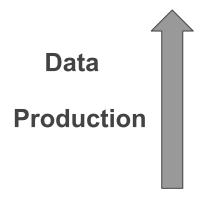
Thread 1



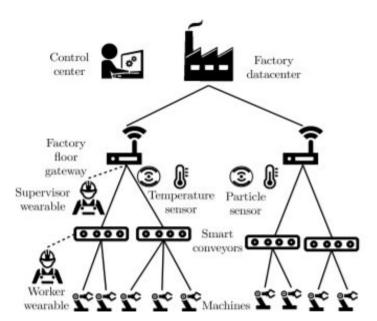
Thread 2

Parallélisation

- RETE:
 - Traitement parallèle de noeuds indépendants sur plusieurs faits

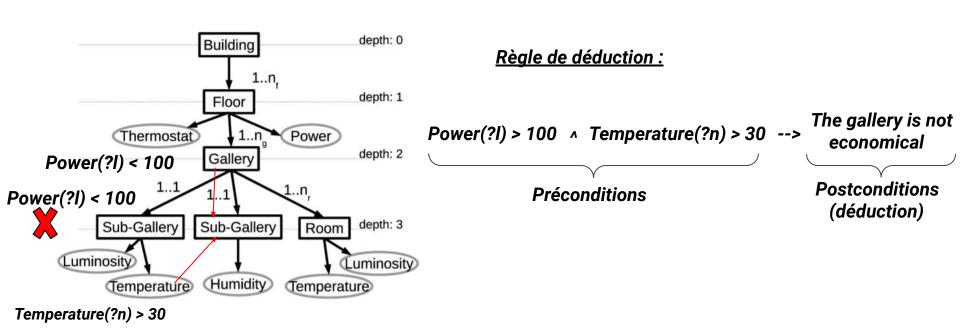

Distribution dirigée par les données :

- Les caractéristiques des données définissent le mode de répartition du raisonnement
 - Sources de données distribuées
 - Contraintes de répartition de charges
 - Découpage intelligent des données (ex : en fonction du schéma)


Vers un raisonnement distribué : Distribution dirigée par les règles

[Seydoux2019]: EDR: A Generic Approach for the Distribution of Rule-Based Reasoning in a Cloud-Fog continuum

Examples: detecting whether power consumption is economical or working environment is secure



Guarantees responsiveness

Rules placement (the deepest possible)

Vers un raisonnement distribué : Distribution dirigée par les règles ...

Conclusion

Constats:

- La plupart des approches embarquées reposent sur l'algorithme Rete
- Les approches multithread ne correspondent pas aux contraintes du raisonnement embarqué et distribué
- Les langages bas-niveau offrent de meilleures performances sur les objets contraints
- Il faut développer des méthodes de raisonnement basées sur des données distribuées

Questions ouvertes :

- Le raisonnement embarqué requiert une empreinte mémoire/énergie/bande-passante faible → quelles structures de données devons-nous utiliser ?
- Le processus de raisonnement devrait-il être distribué selon les règles ou les données ?
- La gestion du raisonnement devrait-elle être centralisée ou décentralisée ?
- Quel format de règles devrait être utilisé pour réduire l'empreinte mémoire et réseau ?

Questions ?

Références

[Forgy82]

Charles L Forgy. Rete: A fast algorithm for the many pattern/many object pattern match problem. In Readings in Artificial Intelligence and Databases, pages 547–559. Elsevier, 1989

[Woensel18]

William Van Woensel and Syed Sibte Raza Abidi. Optimizing semantic reasoning on memory-constrained platforms using the rete algorithm. In European Semantic Web Conference, pages 682–696. Springer, 2018

[Wei15]

Wei Tai, John Keeney, and Declan O'Sullivan. Resource-constrained reasoning using a reasoner composition approach. Semantic Web, 6(1):35–59,2015

Références

[Gupta1993] Ashish Gupta, Inderpal Singh Mumick, and Venka-tramanan Siva Subrahmanian. Maintaining views in-crementally. ACM SIGMOD Record, 22(2):157–166,1993

[Motik2015] Yavor Nenov, Robert Piro, Boris Motik, Ian Horrocks, Zhe Wu, and Jay Banerjee. Rdfox: A highly-scalable rdf store. In International Semantic Web Conference, pages 3–20. Springer, 2015

[Seydoux2019] Nicolas Seydoux, Khalil Drira, Nathalie Hernandez, and Thierry Monteil.Edr: A generic approach for the dynamic distribution of rule-based reasoning in a cloud-fog continuum. Semantic Web Journal, 2019