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The Problem
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Question: Which features can best be used to predict (the
development of) the disease ?

The answer constitutes a form of explanation of the supervised
classification problem / dataset
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Prediction & Discrimination

To predict
To assert that something will happen, is true.

= A feature is said to be predictive when its value can be used
to assert that an individual belongs to a particular class.
To discriminate

To be able to perceive the differences between two things.

= A feature is said to be discriminant when its value can be
used to differentiate between the classes.
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Permutation Importance of Features

Let

T be a test set,
f be a feature,
M be a model,
m be a measure.

M, TH) —m(M, T
impact(fa Mv ’I?’L) ~ Z m( — )k m( : )
=1

predictive

o , according to the model M,
discriminant

The feature f is {

prediction

if it has a negative impact on measuresof < *
discrimination



The Approach

Two steps:

» Identify the most predictive and/or discriminant features
(machine learning + multicriteria decision making)

» Interpret and present their role in the problem according to
the background knowledge on measures (multicriteria
decision making + pattern mining)



Identifying Important Features

Let M be a model and f1, ..., f5 be five features

Accuracy : Jamfi=fo=f5=f3
Sensitivity :  fo = f1 = f5 = f3 = fa
Specificity :  fo = f1 = f3 = f1>= [5
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Identifying Important Features

Let {RF, NN} be two models and fi, ..., f5 be five features

= (RF, Accuracy) : Ja=fi=fe= s f3
co = (RF, Sensitivity) :  fo= fi = f5 = f3 > fa
c3 = (RF, Specificity) - fa = fi = fa>= fa - f5
ca = (NN, Accuracy) . fa = fa = i = fs = fs
cs = (NN, Sensitivity) :  fs = fi = fa > f3 > fa
ce = (NN, Specificity) . fs = fi = fo = fa = f3

Important features = Pareto front of this multicriteria decision
problem
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Identifying Important Features

Let {RF, NN} be two models and fi, ..., f5 be five features

c1 = (RF, Accuracy) : fas=fi=fofs> f3
ca = (RF, Sensitivity) :  fa = fi = fs>= fa > fa
c3 = (RF, Specificity) :  fo= fi= fs>= fa > f5
¢y = (NN, Accuracy) : fisfo=fifs> f3
cs = (NN, Sensitivity) :  f5 = fi = fa > f3 > fa
ce = (NN, Specificity) . [5 = fi = fo = fa = f3

Important features = {f5, f4, 5}



Identifying Important Features

Let {RF, NN} be two models and fi, ..., f5 be five features

¢1 = (RF, Accuracy) :  fa= [1 = fa > f5 = f3
co = (RF, Sensitivity) :  fo = f1 = f5 = f3 > fa
c3 = (RF, Specificity) :  fo= fi= fs>= fa > f5
ca = (NN, Accuracy) . fa = fa = i = fs = fs
cs = (NN, Sensitivity) :  fs = fi = fa > f3 > fa
ce = (NN, Specificity) :  fs = fi = fa = fa = f3

Important features = { /1, fo, f1, f5}



Interpreting the Importance of Features

Let {RF, NN} be two models and fi, ..., f5 be five features

= (RF, Accuracy) : far-fi=fo=f5>f3
co = (RF, Sensitivity) :  fo = fi = fs = f3 > fa
c3 = (RF, Specificity):  fo= fi= fs>= fa > fs5
¢y = (NN, Accuracy) : fas=fo=fi=fs > f3
cs = (NN, Sensitivity) :  fs > f1 = fa = fs = fa
ce = (NN, Specificity) :  fs = fi = fa = fa = f3

f2 is important because of ¢, and c3



Interpreting the Importance of Features

Let {RF, NN} be two models and fi, ..., f5 be five features

= (RF, Accuracy) : Jor= 1= fa> f5 - f3
co = (RF, Sensitivity) :  fo = f1 = f5 = f3 > fa
c3 = (RF, Specificity) :  fo= fi= fs>= fa > f5
¢y = (NN, Accuracy) : fas=fo=fi=fs > f3
cs = (NN, Sensitivity) :  fs > f1 = fa = fs = fa
ce = (NN, Specificity) :  fs = fi = fa = fa = f3

f1 is important because of {c;, c2} (and others)



Interpreting the Importance of Features

» f; is important because of Accuracy — f; is important for
Discrimination

> f; is important because of Sensitivity — f; is important for
Prediction

> f; is important because of {Sensitivity, Specificity} — f; is
important for Prediction

» f; is important because of {Accuracy, Specificity} — f; is
important for nothing in particular (?)



Interpreting the Importance of Features

Let {RF, NN} be two models and fi, ..., f5 be five features

= (RF, Accuracy) : fa=fi=forfs>=fs
co = (RF, Sensitivity) :  fo= fi = f5 = f3 > fa
c3 = (RF, Specificity) :  fo= f1 = fs>= fa> f5
¢y = (NN, Accuracy) : fa=fo=fi=fs = f3
¢s = (NN, Sensitivity) :  fs = fi = fa > f3 > fa
ce = (NN, Specificity) :  fs>= fi = fo = fa > f3

\Accuracy Sensitivity  Specificity Prediction Discrimination Classification

N x
f2 X X X X
fa X X X
fs X X X X



Interpreting the Importance of Features

(f2f5,{Sensitivity, Specificity })

(f4,{Accuracy})

S

(f1,{Classification})



Example

768 instances, 8 features
4 important ones

{Glucose}
{Sensitivity, Specificity, Accuracy,
FScore}

{Age} {Insulin}
{Sensitivity, FScore} { Specificity}

{SkinThickness}
{ Prediction}



Example

111 instances, 1195 features
47 important ones

({383,287}, {Sensitivity, Specificity, Accuracy, FScore})
({284, 252,136, 658, 861},{Specificity, Accuracy, FScore})
(177,200,575, 671,108, 882, 170, 881,849, 616, 887, 381, 603, 619, 169, 138, 134, 664, 986,920, 358, 869} {Sensitivity})
({130}, {Accuracy, FScore, Prediction}) ({170}, {Specifiity, Accuracy})
({250,482,986b, 572}, {Accuracy, FScore})({325},{FScore, Prediction}) ({1360} {Specificity})

({760,120,959, 683, 650}, {Prediction})

({531,1002, 74,985, 55} {Classification})



Merci !



