Graph Pattern Generation and Selection based on Minimum Description Length

Francesco Bariatti Peggy Cellier Sébastien Ferré

Univ Rennes, INSA, CNRS, IRISA name.surname@irisa.fr

07/07/2021

◆□▶ ◆□▶ ▲目▶ ▲目▶ ●□□ ●○○

Table of Contents

Introduction

- OraphMDL: pattern selection
 - Goal
 - Intuition
 - Experimental Evaluation
- GraphMDL+: pattern generation and selection
 - Motivation
 - Intuition
 - Experimental evaluation
 - Current work and conclusion

= 2000

イロト イヨト イヨト

GraphMDL: pattern selectior

- Goal
- Intuition
- Experimental Evaluation
- 3 GraphMDL+: pattern generation and selection
 - Motivation
 - Intuition
 - Experimental evaluation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Context: graph pattern mining

- A lot of data exists in graph form
 - Difficult for humans to interpret large datasets 😕
- Graph pattern mining: extract frequent structures from data
 - Easier for human to understand and interpret 🛱

Pattern explosion!

- Large number of patterns extracted even on small datasets!
- Still difficult for humans to interpret 😕
 - Difficult to analyze thousands or millions of patterns
 - Many redundant patterns
- Need to mine a *small* and *descriptive* subset of patterns

(日)、

Minimum Description Length principle [Rissanen, 1978]

• From the domain of Information Theory

Informally

The model that describes the data the best is the model that compresses the data the best

Formally

Given a family of models M and some data D, the best model $M \in M$ is the one that minimizes the *description length*

$$L(M, D) = \underbrace{L(M)}_{Model} + \underbrace{L(D|M)}_{Data encoded with mode}$$

 In practice, need to define: possible models, encoding the data with a model, description length of model and encoded data

• Some usual representations exist [Lee, 2001]

MDL for graph mining

VoG [Koutra et al., 2015]

Hew and descriptive patterns

𝔅 Non-labeled graphs

Series Pre-defined pattern shapes only

Subdue [Cook and Holder, 1993]

Patterns can contain other patterns

E Loss of information: impossible to exactly reconstruct initial graph

Evaluate patterns individually: a "set of good patterns" and not a "good set of patterns"

(日)

Our goal

- Extract a small, human-sized set of descriptive patterns
 - Using MDL principle to guide the search
- No limits on pattern shapes
- The whole set of patterns is evaluated
 - Take into account interactions between patterns

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction

- OraphMDL: pattern selection
 - Goal
 - Intuition
 - Experimental Evaluation
- 3 GraphMDL+: pattern generation and selection
 - Motivation
 - Intuition
 - Experimental evaluation

E DOC

・ロト ・聞 ト ・ ヨト ・ ヨト

GraphMDL (IDA2020) [Bariatti et al., 2020]

Input:

Data graph

• Set of *candidate patterns* generated with classic graph mining algorithm Output:

- Small set of patterns selected from the candidates
- Data encoded as pattern occurrences

Introduced the notion of **ports** to represent data vertices at the border of several patterns

Intuition

GraphMDL Intuition

Data graph

・ロト ・ 日 ト ・ モ ト ・ モ ト

三日 のへの

GraphMDL Intuition - patterns have occurrences in data

→ Ξ →

< A >

GraphMDL Intuition - patterns have occurrences in data

▲ 伊 ▶ ▲ 三 ▶

< 3

GraphMDL Intuition - patterns have occurrences in data

▲ 伊 ト ▲ 国 ト

Bariatti, Cellier, Ferré

ROCED 2021

07/07/2021 9/19

Intuition

GraphMDL Intuition - patterns have occurrences in data

Bariatti, Cellier, Ferré

ROCED 2021

▲ 注 ▶ 注 □ ∽ へ ↔ 07/07/2021 9/19

GraphMDL Intuition - data as a composition of pattern occurrences

• Data graph described as a composition of pattern occurrences

Lost connectivity

Bariatti, Cellier, Ferré

◆□▶ ◆□▶ ▲目▶ ▲目▶ ●□□ ●○○

GraphMDL Intuition - notion of ports

- We call **ports** the vertices shared by multiple pattern occurrences
- Goal: finding the pattern set that gives the smallest description length
 - More details: F. Bariatti, P. Cellier, and S. Ferré, GraphMDL: Graph Pattern Selection Based on Minimum Description Length, IDA 2020

Bariatti, Cellier, Ferré

Quantitative evaluation

	gSpan	Candidate	GraphMDL	
Dataset	support	count	selection	$L\% = \frac{L(M,D)}{L(M_0,D)}$
AIDS-CA	20%	2194	115	24.42%
AIDS-CA	15%	7867	123	21.64%
AIDS-CA	10%	20596	148	19.03%
AIDS-CM	20%	433	111	28.91%
AIDS-CM	15%	779	131	27.44%
AIDS-CM	10%	2054	163	24.94%
AIDS-CM	5%	9943	225	20.43%
UD-PUD-En	10%	164	162	39.55%
UD-PUD-En	5%	458	249	34.45%
UD-PUD-En	1%	6021	523	28.14%
UD-PUD-En	0%	233434	773	26.25%

- First two datasets: molecules
- Third dataset: dependency relationships between words in sentences

Bariatti, Cellier, Ferré

◆□ > ◆□ > ◆三 > ◆三 > 三 = の < ⊙

Quantitative evaluation

	gSpan	Candidate	GraphMDL	
Dataset	support	count	selection	$L\% = \frac{L(M,D)}{L(M_0,D)}$
AIDS-CA	20%	2194	115	24.42%
AIDS-CA	15%	7867	123	21.64%
AIDS-CA	10%	20596	148	19.03%
AIDS-CM	20%	433	111	28.91%
AIDS-CM	15%	779	131	27.44%
AIDS-CM	10%	2054	163	24.94%
AIDS-CM	5%	9943	225	20.43%
UD-PUD-En	10%	164	162	39.55%
UD-PUD-En	5%	458	249	34.45%
UD-PUD-En	1%	6021	523	28.14%
UD-PUD-En	0%	233434	773	26.25%

- Number of patterns greatly reduced
 - Candidates probably have redundancies, avoided by GraphMDL
- GraphMDL finds pattern that decrease description length
 - Good at finding descriptive patterns that compress the data

Quantitative evaluation

	gSpan	Candidate	GraphMDL	
Dataset	support	count	selection	$L\% = \frac{L(M,D)}{L(M_0,D)}$
AIDS-CA	20%	2194	115	24.42%
AIDS-CA	15%	7867	123	21.64%
AIDS-CA	10%	20596	148	19.03%
AIDS-CM	20%	433	111	28.91%
AIDS-CM	15%	779	131	27.44%
AIDS-CM	10%	2054	163	24.94%
AIDS-CM	5%	9943	225	20.43%
UD-PUD-En	10%	164	162	39.55%
UD-PUD-En	5%	458	249	34.45%
UD-PUD-En	1%	6021	523	28.14%
UD-PUD-En	0%	233434	773	26.25%

- Number of patterns greatly reduced
 - Candidates probably have redundancies, avoided by GraphMDL
- GraphMDL finds pattern that decrease description length
 - Good at finding descriptive patterns that compress the data

Qualitative evaluation

- Both small and big patterns selected
- Known structure found: P1 is carboxylic acid
 - Without any previous chemistry knowledge!
- Ports clearly identify how patterns are connected

Introduction

- 2 GraphMDL: pattern selection
 - Goal
 - Intuition
 - Experimental Evaluation
- GraphMDL+: pattern generation and selection
 - Motivation
 - Intuition
 - Experimental evaluation

4 Current work and conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

GraphMDL+ (SAC2021) [Bariatti et al., 2021]

GraphMDL: select patterns from a set of candidates:

- 😌 Need to mine candidates beforehand
- ullet igodot Dependency on external pattern generation algorithm
 - Candidates restricted to what that algorithm can generate
- 😌 Need to sieve through many ''useless'' candidates
 - Pattern generation algorithm has no knowledge of what could be useful to GraphMDL
 - Large set of candidate patterns: large time needed to treat them

GraphMDL+: generate and select patterns

- 🗂 Control over candidate patterns
- 🗋 Independent from other approaches
- 🗳 Parameter-free approach
- 🗳 Anytime approach
 - Generation & selection can be stopped at any time and still give a solution

GraphMDL vs GraphMDL+

ROCED 2021

07/07/2021 13/19

Data graph

▲御▶ ▲臣▶

Bariatti, Cellier, Ferré

ELE SQC

- Incode the data with the current pattern set
 - First iteration: singleton-only pattern set

Q Create a candidate for each pair of patterns sharing a port

 If they appear together, maybe they can be replaced with a pattern that merges them

- 4 同 ト 4 ヨ ト 4 ヨ

8 Rank all candidates according to heuristic

Banked candidates

Expected usage: 4

Expected usage: 3

(日)

Expected usage: 1

ELE DOG

• Try to add top candidate to pattern set, see if it improves according to MDL

- If it does: candidate accepted
- If it does not: test next candidate

Pattern occurrences

Data as

イロト イヨト イヨト

Seperat until no candidate improves pattern set

ELE DOG

イロト イヨト イヨト

Main challenges

- Pattern merging formal definition
 - Allow any way of merging two patterns
 - More than one vertex per pattern may be merged
- Isomorphisms and automorphisms [Fortin, 1996]

Patterns that appear different may actually be equivalent

- Candidate ranking heuristic
 - Which candidate tested first? Avoid testing all candidates at each step
 - Evaluated experimentally

More details: F. Bariatti, P. Cellier, and S. Ferré, GraphMDL+: interleaving the generation and MDL-based selection of graph patterns, SAC 2021.

Bariatti, Cellier, Ferré

Quantitative comparison with GraphMDL

	GraphMDL		GraphMDL+		
Dataset	$L_1 = best L\%$	time	time for $L\% \leq L_1$	best L%	time
AIDS-CA	19.15%	111m	36s	12.02%	77m
AIDS-CM	20.71%	170m	1m	14.68%	240m
Mutag	15.42%	158m	3s	10.73%	1m
PTC-FM	22.87%	102m	12s	22.01%	1m
PTC-FR	23.35%	27m	8s	22.62%	1m
PTC-MM	23.65%	129m	4s	22.12%	1m
PTC-MR	23.09%	18m	7s	21.43%	1m
UD-PUD-En (undir.)	26.84%	101m	3m	25.29%	152m

E DOC

・ロト ・聞 ト ・ ヨト ・ ヨト

Quantitative comparison with GraphMDL

	GraphMDL		GraphMDL+		
Dataset	$L_1 = best L\%$	time	time for $L\% \leq L_1$	best L%	time
AIDS-CA	19.15%	111m	36s	12.02%	77m
AIDS-CM	20.71%	170m	1m	14.68%	240m
Mutag	15.42%	158m	3s	10.73%	1m
PTC-FM	22.87%	102m	12s	22.01%	1m
PTC-FR	23.35%	27m	8s	22.62%	1m
PTC-MM	23.65%	129m	4s	22.12%	1m
PTC-MR	23.09%	18m	7s	21.43%	1m
UD-PUD-En (undir.)	26.84%	101m	3m	25.29%	152m

• \square Significantly less time than GraphMDL to attain equivalent results

- GraphMDL needs to process all candidate patterns, but most of them are redundant and/or useless in terms of MDL
- GraphMDL+ generates less candidates of higher quality

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Quantitative comparison with GraphMDL

	GraphMD	L	GraphMDL+		
Dataset	$L_1 = best L\%$	time	time for $L\% \leq L_1$	best L%	time
AIDS-CA	19.15%	111m	36s	12.02%	77m
AIDS-CM	20.71%	170m	1m	14.68%	240m
Mutag	15.42%	158m	3s	10.73%	1m
PTC-FM	22.87%	102m	12s	22.01%	1m
PTC-FR	23.35%	27m	8s	22.62%	1m
PTC-MM	23.65%	129m	4s	22.12%	1m
PTC-MR	23.09%	18m	7s	21.43%	1m
UD-PUD-En (undir.)	26.84%	101m	3m	25.29%	152m

• 🛱 GraphMDL+ finds better patterns sets than GraphMDL

 Given enough time and candidates GraphMDL would also find them, but in such a long time that it would not be practical

ELE SOO

・ロト ・ 日 ト ・ モ ト ・ モ ト

Qualitative comparison with GraphMDL

GraphMDL+ does not depend on external graph mining approaches

• GraphMDL could handle the pattern on the right, but the algorithm used for candidate generation¹ could not (forced all vertices to have a label)

¹gSpan [Yan and Han, 2002]

EL SOG

イロト イヨト イヨト

Introduction

GraphMDL: pattern selection

- Goal
- Intuition
- Experimental Evaluation

3 GraphMDL+: pattern generation and selection

- Motivation
- Intuition
- Experimental evaluation

Current work and conclusion

_				_
Par	in the second		10 1	- O 7 76
Dai	ιαιι.	Ce.	е.	

E DOC

・ロト ・聞 ト ・ ヨト ・ ヨト

Current work: KG-MDL

Current work: applying GraphMDL+ to knowledge graphs

- Huge quantity of data available as knowledge graphs
- KGs can be human-readable but large: patterns can help extract knowledge
- 🟵 KGs are "graphs" but adaptation is not straightforward

- Should two entities be neighbours just because they have the same literal value for a property?
- Should all lists be connected just because they all end with rdf:nil ?
- Scalability issues
 - Nodes degree tend to follow a power-law
 - Pathological patterns, e.g. "two things in the same city"

• 🖄 Current results are very promising

・ロト ・ 同ト ・ モト ・ モト

Conclusion

- MDL principle is a powerful tool for graph mining
- We developed approaches to select small sets of descriptive patterns
 - Anytime and parameterless
- Notion of **ports** to encode the data using pattern occurrences
 - From the data point of view: vertices described by multiple patterns
 - From pattern point of view: "interface" to other patterns
- Extracted patterns allow for human interpretation of complex datasets

I am looking for a post-doctorate out of France starting in summer 2022! francesco.bariatti@irisa.fr

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Bariatti, F., Cellier, P., and Ferré, S. (2020). GraphMDL: Graph Pattern Selection Based on Minimum Description Length. In Berthold, M. R., Feelders, A., and Krempl, G., editors, *Advances in Intelligent Data Analysis XVIII*, Lecture Notes in Computer Science, pages 54–66. Springer International Publishing.

Bariatti, F., Cellier, P., and Ferré, S. (2021). GraphMDL+: interleaving the generation and MDL-based selection of graph patterns.

In *Proceedings of the 36th Annual ACM Symposium on Applied Computing*, SAC '21, pages 355–363. Association for Computing Machinery.

🥫 Cook, D. J. and Holder, L. B. (1993).

Substructure Discovery Using Minimum Description Length and Background Knowledge.

Journal of Artificial Intelligence Research, 1:231–255.

📔 Fortin, S. (1996).

The Graph Isomorphism Problem. page 25.

Summarizing and understanding large graphs.

Statistical Analysis and Data Mining: The ASA Data Science Journal, 8(3):183-202.

📔 Lee, T. C. M. (2001).

An Introduction to Coding Theory and the Two-Part Minimum Description Length Principle.

International Statistical Review, 69(2):169–183.

Rissanen, J. (1978).

Modeling by shortest data description.

Automatica, 14(5):465-471.

Yan, X. and Han, J. (2002).

gSpan: Graph-based substructure pattern mining.

In 2002 IEEE International Conference on Data Mining. Proceedings, pages 721-724. Springer Berlin Heidelberg.

◆□▶ ◆□▶ ▲目▶ ▲目▶ ●□□ ●○○

Image credits

• All other images: Francesco Bariatti

Dar	0.00 E	Cal	lier	Forn	6
Dai	all'i		ner,	ren	c

< 口 > < 同 >

07/07/2021 1/2

4 B 6 4 B 6

KG-MDL patterns - Lemon dataset

"ClassNoun" pattern with CommonNoun entry

- Lemon dataset creates its data using some design patterns
- KG-MDL retrieved the design patterns by looking at the data
 - Fig. above: "ClassNoun" pattern, i.e. a lexical entry that is a common noun (e.g. "lake"), and whose meaning is a class (e.g. dbo:Lake)

KG-MDL patterns - Lemon dataset

- A pair of NounPhrase (compound nouns) sharing the same first element whose meaning are distinct classes, e.g. dbo:BloodVessel and dbo:BloodType.
- Does not correspond to a design pattern used to create the graph, but highlights a common structure of the data

< 日 > < 同 > < 回 > < 回 > 三 = > 三 = < = > 三 = < = > 三 = < = > 三 = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = < = > = = < = > = < = > = = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = > = < = = < = > = < = > = < = > = < = > = < = > = < = > = = < = > = < = > = = < = > = < = > = < = > = < = > = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = > = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = < = = <

KG-MDL patterns - NTNames dataset

- Suggests axioms that appear in the RDFS/OWL schema
 - childOf inverse of parentOf
 - siblingOf symmetric
- Suggest axions that can not be expressed in RDFS/OWL
 - Two people with same parent are sibling

< ∃ > <

KG-MDL patterns - NTNames dataset

• How to represent geographical information of cities using the schema

- Altitude is always 0!? It is actually what happens in the data
 - Probably an error or a way to represent missing information
 - Impossible to know by just looking at the RDFS/OWL schema

イロト イヨト イヨト