Domagoj Vrgoc¢

PUC Chile &
A N F Fundamentos
nstitute ftor Foundational Research on Data Jd¢t de IOS datos

THE MESSAGE

= Analysis vs synthesis
= Push the envelope forward

» Understand what we have thus far
= The latter seems to be out of fashion

= What I would like to show:
= Sometimes it is worth going back to the basics

BREADTH FIRST SEARCH (BFS)

= We all know it, so what will we do?
= Show that it can evaluate navigational queries efficiently

= It can return paths as part of the query
= Allows for "fully compositional" semantics of graph queries

= How do [know these things?
= Theoreicians have been saying something similar all along

= Several papers on the topic
= We built a graph database at IMFD that shows this

GRAPH DATABASES

WHY GRAPH DATABASES?

= More intuitive conceptualization:
= Naturally model relationships (e.g. social networks, bio pathways)

= Potential efficiency gains:
= Navigation vs. doing a bunch of joins
= This is where I'm trying to drive the discussion

= Fashion?

GRAPHS IN PRACTICE I

= Edge labeled graphs (RDF)

. | .
Clint Eastwood Unforgiven R acts_in

= Allows recording information in a compact way:
= Node/edge is the data
= The connections can be coded as triples
= E.g. (Clint Eastwood, acts_in, Unforgiven)

Anna Levine

GRAPHS IN PRACTICE II

= Property graphs

I
| role=Bill
|
|

T e e = ==
|
ref=IMDb L hetitan !
- ! ref=1IMDb '
p ! name = Anna Levine
title=Unforgiven J L gender = female

n1 . Person

name = Clint Eastwood

gender =male

= More realistic:
= Allows recording data using using attribute values
= Implicit typing through node/edge labels (good for indexing)
= More robust than RDF
= Node/Edge IDs are explicit

GRAPH DATABASE SYSTEMS

= Edge labelled graphs
= RDF systems

= SPARQL query language (W3C standard)
= Multiple (reasonable) implementations (Virtuoso, Blaze Graph, Jena)

= Property graphs
= Neo4j with the Cypher query language
= Tinkerpop/Gremlin
= TigerGraph

» MillenniumDB

QUERYING GRAPHS

GRAPH QUERY FEATURES

= Pattern matching
= Matching a small graph (pattern/query) onto a bigger one (data)
= Basically conjunctive queries
= Different semantics available based on user needs

= Navigational queries
= Designed to explore connections between points in graph

= Most common query: path specification
= Different semantics can have huge impact on evaluation efficiency

See [AABHRV17] for more details

NAVIGATION IN GRAPHS

= Exploring connections
= Paths whose length is not known in advance

= Patterns repeated in a "regular" manner

= Examples:
= Friend-of-a-friend relation in a social network

= Bacon/Erdos number
= Shortest routes between two places

PATH QUERIES

= The most basic navigational query class
= Gives (pairs of) nodes connected by a path conforming to the query

= Usually specified using regular expressions

= The labels on the edges along a path form a word in the language of
the expression

= Present in many languages:
= SPARQL property paths
= Neo4] queries
= Most theoretical literature takes paths as the base for navigation

SPECIFYING PATH (UERIES

= Expressions of the form

regex
Xz 7 Y

= x and y are variables or constants (IDs)

= regex 1s a regular expression

= "Semantics'': All (X,y) connected by a path whose "label" is in
the language of regex

©

EXAMPLE 1 — BACON NUMBER

= Actors that have a Bacon number in a movie database

rdfs:type

:acts in

director

EXAMPLE 1 — BACON NUMBER

(acts_in-acts_in~)~ ,
T > Kevin

rdfs:type

EXAMPLE 1 — BACON NUMBER

SELECT ?x

MATCH (?x)=[(:acts_in/”:acts_in)*]=>(Kevin Bacon)

rdfs:type

:acts in

director

EXAMPLE 1 — BACON NUMBER

SELECT 7x
WHERE { 7?x (:acts_in/ " :acts_in)* Kevin_Bacon }

rdfs:type

EXAMPLE 1 — BACON NUMBER

SELECT 7x
WHERE { 7?x (:acts_in/ " :acts_in)* Kevin_Bacon }

rdfs:type

EXAMPLE 1 — BACON NUMBER

SELECT 7x
WHERE { 7?x (:acts_in/ " :acts_in)* Kevin_Bacon }

rdfs:type

EXAMPLE 1 — BACON NUMBER

SELECT 7x
WHERE { 7?x (:acts_in/ " :acts_in)* Kevin_Bacon }

rdfs:type

EXAMPLE 1 — BACON NUMBER

SELECT 7x
WHERE { 7?x (:acts_in/ " :acts_in)* Kevin_Bacon }

rdfs:type

EXAMPLE 1 — BACON NUMBER

SELECT 7x
WHERE { 7?x (:acts_in/ " :acts_in)* Kevin_Bacon }

rdfs:type

EXAMPLE 1 — BACON NUMBER

SELECT 7x
WHERE { 7?x (:acts_in/ " :acts_in)* Kevin_Bacon }

rdfs:type

EXAMPLE 1 — BACON NUMBER

SELECT 7x
WHERE { 7?x (:acts_in/ " :acts_in)* Kevin_Bacon }

rdfs:type

EXAMPLE 1 — BACON NUMBER

SELECT 7x
WHERE { 7?x (:acts_in/ " :acts_in)* Kevin_Bacon }

rdfs:type

EXAMPLE 2

= Tags of what my friends-of-friends like in a social network

knows " -likes ohasTag\

£

firstName = Julie
lastName =Freud
country=Chile

—_—_ - — -

: hasTag |

l ey

- - - — —

content=1 love U2

language=en

4

firstName = John

lastName = Cook

gender =male

country=Chile

content =Queen is awesome

FURTHER EXRAMPLES

= Taken from the WikiData dataset user queries

= Bodies of water ending in the Black Sea:

SELECT 7watercourse
WHERE { ?watercourse :drains_to* Black_Sea }

= Hierarchies/Taxonomies:

SELECT 7creature
WHERE { 7creature :instance_of/:subclass_of* Human }

©

QUESTION WE ARE TRYING T0 ANSWER

How should one implement path queries
in a graph database?

PATH QUERIES - SEMANTICS

SELECT ?x

MATCH (?x)=[(:acts_in/”:acts_in)*]=>(Kevin Bacon)

= What is a path?
= A sequence of nodes/edges:nl el n2e2 n3 ...

= When does a path conform to a regular expressions?
= When the labels of the edges give a word in its language

= What do we return?
= Just the endpoints (?x)

= Paths satisfying the constraint (together with ?x)

PATH QUERIES - SEMANTICS

SELECT ?x

MATCH (?x)=[:knows*]=>(Q2)

= Returning only endpoints
= Bag semantics: how many times? Can be infinite!
= Set semantics: just give me the nodes connected by a "good" path!

eq : knows

(@

es> : knows

PATH QUERIES - SEMANTICS

= Returning paths as well:
= There can be infinitely many (if a cycle is present)!

= How would you express this in SPARQL?
= What does bag semantics mean here?

SELECT ?x, ?p
MATCH (?x)=[?p :knows*]=>(Q2)

SEMANTICS — AVOIDING INFINITY

= Using simple paths:
= No repeated nodes — cycles not a problem anymore
= Immediately leads to intractability [MW95]
= A reason to exclude them from SPARQL standard [ML12]

= No-repeated-edges:
= Similarly avoids infinity
= The semantics of Cypher
= Equivalent to simple paths
= If implemented in full (all matches) runs into the same issues

REASONABLE SOLUTIONS

= Shortest paths:
= No infinity issues
= Allows bag semantics with endpoints (count all shortest paths)
= Allows returing paths

= Arbitrary paths:
= Can be infinite

= Works when returning endpoints with set semantics
= SPARQL standard

= Both options have good theoretical properties
= Many algorithms known for implementing them

HOW DO WE IMPLEMENT PATH QUERIES?

= Theoretician's answer ("This is trivial"): [MW95]
= Graph is an automaton
= Regular expression is an automaton
= Do the cross product (on-the-fly to be "efficient")
= Do reachability check from start states to end states

= Which algorithms can do this?
= BFS
= DFS
« A%
= IDDFS

HOW DOES THIS ACTUALLY WORK?

Lori Singer

“ac’ﬁo" Footlose

] :name . :

Crazy, Stupid, Love

Steve Carell

Julianne Moore

HOW DOES THIS ACTUALLY WORK?

SELECT ?x
MATCH (Kevin Bacon)=[(~:actor/:actor)*/:name]=>(?x)

HOW DOES THIS ACTUALLY WORK - DF3

HOW DOES THIS ACTUALLY WORK - DF3

HOW DOES THIS ACTUALLY WORK - DF3
—qact

HOW DOES THIS ACTUALLY WORK - DF3

HOW DOES THIS ACTUALLY WORK - DF3

HOW DOES THIS ACTUALLY WORK - DF3

qact

A

A:actor

quV

Footlose

-actor

:actor

hJ qact

Julianne Mooreqend

‘ A-actor -name
Armov q

:actor
Shortcuts <

act

C)

HOW DOES THIS ACTUALLY WORK - DF3

qact

A
A-actor
quV
Footlose
—
(@)
e
&) :actor
@
hJ qact q
Julianne Moore end
‘ A-actor -name
Irmov -actor Qact
Shortcuts <

= Can produce long/unintuitive paths

C)

HOW DOES THIS ACTUALLY WORK - BES

qact

HOW DOES THIS ACTUALLY WORK - BES

-actor

HOW DOES THIS ACTUALLY WORK - BES

qact
< 4..
quV quV
Footlose Crazy,Stupid,Love

HOW DOES THIS ACTUALLY WORK - BES

qact

quV quV
Footlose Crazy,Stupid,Love

-actor

qact

.name .name

.name

Lori Singer John Lithgow

$:name
Julianne Moore

Steve Carell

HOW DOES THIS ACTUALLY WORK - BES

qact

quV quV
Footlose Crazy,Stupid,Love

-actor

qact
:name :name
:name
Lori Singer John Lithgow
$:name
Julianne Moore
. Steve Carell
= Gets the first result slower than necessary

HOW DOES THIS ACTUALLY WORK — A*

qact

Heuristic: get close to g, 4 -

HOW DOES THIS ACTUALLY WORK — A*

Heuristic: get close to g, 4

HOW DOES THIS ACTUALLY WORK — A*

qact

Heuristic: get close to g, 4
< 4..
V 3oy
quV quV
Footlose Crazy,Stupid,Love

-actor

HOW DOES THIS ACTUALLY WORK — A*

qact

Heuristic: get close to g, 4

< 4..
quV quV
Footlose Crazy,Stupid,Love

-actor

.name .name

Lori Singer John Lithgow

HOW DOES THIS ACTUALLY WORK — A*

qact

Heuristic: get close to g, 4

1
O“ '
V Cloy
quV quV
Footlose Crazy,Stupid,Love
—
O
e’ S &
O xO (‘Do o
@S 2 % 3
b g o, .,.a?
qact qact

.name .name

Lori Singer John Lithgow

= Seems to bring the best of both worlds

SPAR(L

= So you would think this works
= Endpoints/set semantics

= No counting paths(standard)

< C @ O 8 htips://query.wikidata.org/#SELECT * %0AWHERE {%0A%20 wd%3AQ3454165 (~wdt%3AP161%2Fwdt%3AP161)* %3Factor %0A} 60ALIMIT 1
|II||I|I|| Wikidata Query Service = Examples @Hep ~ £+ More tools | ~

3 SELECT *

4 WHERE {

5 wd:03454165 ("wdt:Plel/wdt:Plel)* ?actor
6 }

7 LIMIT 1

Query timeout limit reached (@)

SPARQL'S ODDITIES

|II||I|I|| Wikidata Query Service = Examples O Help ~ £% More tools | ~

3 SELECT *
4 WHERE {
5 wd:03454165 ("~wdt:Plel/wdt:Plel/~wdt:Plel/wdt:Plel) <2actor

®. 9 837237 results in 5046 ms (@)

SOME APPROACHES

= On top of RDF3X [GBS13]
= In-memory index used to compress graphs [SABW13]

= Implements BFS to evaluate property paths
= Good performance compared to other solutions
= Endpoint/set semantics

= SQL based approach [RSV15]
= Seminaive SQL-style recursion in SPARQL

= Can do decently when evaluating property paths
= Endpoint/set semantics
= Controlling recursion depth shown better than manual joins

SOME APPROACHES

= Query planners for path queries [YGG16]
= Uses automaton of the regex to plan evaluation

= Based on Postges
= Implemented using stored procedures

= Path index [FPP16]
= Assumes bounded repetitions (not Kleene star)

= Index "popular" path prefixes
= Rewrite the query and run joins over this

Answers

SOME APPROACHES

= On Linked Data [BDRV17]
= No data available locally (everything is accessed via an IRI)

= Tests how BFS/DFS/A* perform
= Allows incremental solutions and returning paths
= For a small amount of solutions runs better than existing engines

g Coauthor g NATO g Bacon

250 200 1000

200
150 F

8OO : --. BFS 1

-
u
=]

600

Answers
=
=
g
Answers

-
o
=]

400

501

501 200

il z RTILILS R
o 100 200 300 400 500 100 150 DEl 100 200 300 400 500 600 700 800
Requests Requests Requests

WHAT ARE WE DOING NOW

= MillenniumDB
= A persistend graph database engine

= Based on standard relational techniques tweaked for graphs
= Pipelined query evaluation
= WCO query planner (in conjunction with Selinger) [HRRS19]

= Full support for navigational queries [BDRV17]:
= Endpoints/set semantics
= Returning paths
= Bag semantics with shortest paths

MILLENNIUM DB

= We use good old B+ trees

I
| role=Bill
|
|

I

I

| | |
e e
! I

ref =IMDb

ref=IMDDb

n1 . Person

name = Clint Eastwood

name = Anna Levine

title=Unforgiven J‘

gender =male L gender =female

= Relations required:
= NodeLabel ... e.g. (nl, Person)

= NodeKeyValue ...e.g. (nl,gender,male), (el,role,Bill)
= FromTypeToEdge ...e.g.(nl,:acts_in,n2,el)

= and several of their permutations

MILLENNIUM DB — PATH QUERIES

= FromTypeToEdge ...e.g.(nl,:acts_in,n2,el)
= Support for BFS/DFS/A*
= All implemented in a pipelined fashion (via a linear iterator)
= How to return a result as soon as it is encountered: B+tree iter stays live

Qact
0" 4.‘
V oy
Amov Omov
Footlose Crazy,Stupid,Love
S 8
O)
% 5,
Jact Qact

Tact

name

‘name
Julianne Moore @

Steve Carell

Lori Singer John Lithgow

MILLENNIUM DB — PATH QUERIES

= Some results on full WikiData (cca 1TB on disk)
= QI ...Bacon Number ... 160K results

= Q2 ... Places located in a Nato state ... 4.8M results

= Q3 ... Organizations dealing with EU capitals ... 17K results

= Q4 ...Where can I get to from the Netherlands ... 4K results

= Q5 ... Spouses of people born in a place in the US ... 35K results

= What do you think the best algorithm is?
= Recall, you are now reading data from disk
= You have pages pinned in the buffer
= You have auxiliary data structures to keep track of visited nodes

MILLENNIUM DB — PATH QUERIES

Time to completion

= Basically, BFS wins in every experiment

000000

MILLENNIUM DB — PATH QUERIES

10% of all the results
ooooo

1000
100
10 I I
1 mm Nl
Q1 Q2 Q3 Q4 Q5
EBFS mDFS mA¥*

= Still holding strong, but DFS/A* do well
= Identical graph with only 1% of all the results required

MILLENNIUM DB — PATH QUERIES

= Why would BFS run so well?
= If we are also returning paths, it is orders of magnitude faster

= How many pages need to be pinned in the buffer?
= DFS:length of the current path (stack height)

= A*: all top elements on the priority queue
= BFS: just one (the item on the top of the queue)

= Also means parrallel executions are feasible for BFS

BES — OTHER ADVANTAGES

= We can return a single shortest path by default

= With a bit of tweaking can return all shortest paths

= Allows compositionality:
= What does a graph query return?

= Let's say a graph
= But which one?

COMPOSITIONALITY

SELECT ?x, ?y, ?z
MATCH (?x :Person)-[:knows]->(?y :Person),

(?y)-[:1ives _in]->(?z : City),
(Kevin Bacon)=[("~:actor/:actor)*/:name]=>(?x)

= Construct the graph:
= All nodes/edges in fixed size pattern

= All shortest paths in path queries
= Assume that SELECT variables are your view of this graph
= [G-CORE] tried something along these lines

LOOKING FORWARD

= GPU transitive closure
= Seems to be much faster that the classical one

= Shrinking the graph:
= Remove the noise, work with the paths alone
= Preliminary results promising, but no paths [AHNRRS21]

= Learning the relevant parts of the graph:
= Try to learn which part of the graph will be accessed by the query

LOOKING FORWARD

= Understanding indexing schemes:
= With good guarantees/estimates

= Which scheme goes with which algorithm/approach

= Query plans based on automata, and not SQL-like plans:
= Transitive closure approach a good option, but maybe missing the point

= Compiling query into automata (what is the optimal one?)
= This line of work was started in [YGG16]

BOTTOM LINE

= Do we know how to implement a graph database?
= Does any existing system support path queries?
= Do classical algorithms suffice?

= Do we know what we want to implement?
= What types of queries
= Which semantics
= Ongoing standardization efforts

= Seems like there is work to be done ©

Thank you!

REFERENCES

[AABHRV17] Renzo Angles, Marcelo Arenas, Pablo Barceld, Aidan Hogan, Juan L. Reutter,
Domagoj Vrgoc: Foundations of Modern Query Languages for Graph Databases. ACM
Comput. Surv. 50(5): 68:1-68:40 (2017)

[ACP12] Marcelo Arenas, Sebastian Conca, Jorge Pérez: Counting beyond a Yottabyte, or
how SPARQL 1.1 property paths will prevent adoption of the standard. WWW 2012.

[BDRV16] Jorge Baier, Dietrich Daroch, Juan L. Reutter, Domagoj Vrgoc: Property Paths over
Linked Data: Can It Be Done and How To Start? COLD@ISWC 2016

[F12] Wenfei Fan: Graph pattern matching revised for social network analysis. ICDT 2012:
8-21

[LMV16] Leonid Libkin, Wim Martens, Domagoj Vrgoc¢: Querying Graphs with Data.]. ACM
63(2): 14:1-14:53 (2016)

[V14] Domagoj Vrgoc: Querying graphs with data, PhD Thesis, University of Edinburgh,
2014

[FPP16] George H. L. Fletcher, Jeroen Peters, Alexandra Poulovassilis: Efficient regular path
query evaluation using path indexes. EDBT 2016

REFERENCES

[BDRV17] Jorge Baier, Dietrich Daroch, Juan L. Reutter, Domagoj Vrgoc: Evaluating
navigational RDF queries over the Web, HT 2017

ERSVIS] Juan L. Reutter, Adrian Soto, Domagoj Vrgoc¢: Recursion in SPARQL. International
emantic Web Conference 2015

{DMWQS] Alberto O. Mendelzon, Peter T. Wood: Finding Regular Simple Paths in Graph
atabases. SIAM J. Comput. 24(6): 1235-1258 (1995)

E‘Mlg Kat(j)a Losemann, Wim Martens: The complexity of evaluating path expressions in
PARQL.PODS 2012: 101-112

YGG 16] Nikolay Yakovets, Parke Godfrey, Jarek Gryz:
18118%ry Planning for Evaluating SPARQL Property Paths. SIGMOD Conference 2016: 1875-

£CYDYW08] iefen%Chen%, effrey Xu Yu, Bolin Ding, Philip S.Yu, Haixun Wang: Fast Graph
attern Matching. ICDE 2008: 913-922

£GBS 13] Andrey Gubichev, Srikantag. Bedathur, Stephan Seufert: Sparqling Kleene - Fast
roperty Paths in RDF-3X. GRADES 2013.

HHRRZ1 6%Da_nie1 Hernandez, Aidan Hogan, Cristian Riveros, Carlos Rojas, Enzo Zerega:
uerying Wikidata: Comparing SPARQL, Relational and Graph Databases. ISWC 2016

REFERENCES

= [HRRS19] Aidan Hogan, Cristian Riveros, Carlos Rojas, Adrian Soto: A Worst-Case Optimal
Join Algorithm for SPARQL. ISWC 2019

= [SABW13] S. Seufert, A. Anand, S.]J. Bedathur, and G. Weikum: FERRARI: Flexible and
Efficient Reachability Range Assignment for Graph Indexing. ICDE 2013

= [G-CORE] Renzo Angles, Marcelo Arenas, Pablo Barceld, Peter A. Boncz, George H. L.
Fletcher, Claudio Gutiérrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow, Juan F.
Sequeda, Oskar van Rest, Hannes Voigt: G-CORE: A Core for Future Graph Query
Languages. SIGMOD 2018

= [AHNRRSZ21] Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, Juan L. Reutter, Javiel Rojas-
Ledesma, Adrian Soto: Worst-Case Optimal Graph Joins in Almost No Space. SIGMOD 2021

