
Domagoj Vrgoč

PUC Chile

Institute for Foundational Research on Data

▪ Analysis vs synthesis

▪ Push the envelope forward

▪ Understand what we have thus far

▪ The latter seems to be out of fashion

▪ What I would like to show:

▪ Sometimes it is worth going back to the basics

2

▪ We all know it, so what will we do?

▪ Show that it can evaluate navigational queries efficiently

▪ It can return paths as part of the query

▪ Allows for "fully compositional" semantics of graph queries

▪ How do I know these things?

▪ Theoreicians have been saying something similar all along

▪ Several papers on the topic

▪ We built a graph database at IMFD that shows this

3

4

▪ More intuitive conceptualization:

▪ Naturally model relationships (e.g. social networks, bio pathways)

▪ Potential efficiency gains:

▪ Navigation vs. doing a bunch of joins

▪ This is where I'm trying to drive the discussion

▪ Fashion?

5

▪ Edge labeled graphs (RDF)

▪ Allows recording information in a compact way:

▪ Node/edge is the data

▪ The connections can be coded as triples

▪ E.g. (Clint Eastwood, acts_in, Unforgiven)

6

▪ Property graphs

▪ More realistic:
▪ Allows recording data using using attribute values

▪ Implicit typing through node/edge labels (good for indexing)

▪ More robust than RDF

▪ Node/Edge IDs are explicit

7

▪ Edge labelled graphs

▪ RDF systems

▪ SPARQL query language (W3C standard)

▪ Multiple (reasonable) implementations (Virtuoso, Blaze Graph, Jena)

▪ Property graphs

▪ Neo4j with the Cypher query language

▪ Tinkerpop/Gremlin

▪ TigerGraph

▪ MillenniumDB

8

9

▪ Pattern matching

▪ Matching a small graph (pattern/query) onto a bigger one (data)

▪ Basically conjunctive queries

▪ Different semantics available based on user needs

▪ Navigational queries

▪ Designed to explore connections between points in graph

▪ Most common query: path specification

▪ Different semantics can have huge impact on evaluation efficiency

See [AABHRV17] for more details

10

▪ Exploring connections

▪ Paths whose length is not known in advance

▪ Patterns repeated in a "regular" manner

▪ Examples:

▪ Friend-of-a-friend relation in a social network

▪ Bacon/Erdos number

▪ Shortest routes between two places

11

▪ The most basic navigational query class

▪ Gives (pairs of) nodes connected by a path conforming to the query

▪ Usually specified using regular expressions

▪ The labels on the edges along a path form a word in the language of
the expression

▪ Present in many languages:

▪ SPARQL property paths

▪ Neo4J queries

▪ Most theoretical literature takes paths as the base for navigation

12

▪ Expressions of the form

▪ x and y are variables or constants (IDs)

▪ regex is a regular expression

▪ "Semantics": All (x,y) connected by a path whose "label" is in
the language of regex

13

▪ Actors that have a Bacon number in a movie database

14

15

16

17

18

19

20

21

22

23

24

25

▪ Tags of what my friends-of-friends like in a social network

26

▪ Taken from the WikiData dataset user queries

▪ Bodies of water ending in the Black Sea:

▪ Hierarchies/Taxonomies:

27

How should one implement path queries
in a graph database?

28

▪ What is a path?

▪ A sequence of nodes/edges: n1 e1 n2 e2 n3 ...

▪ When does a path conform to a regular expressions?

▪ When the labels of the edges give a word in its language

▪ What do we return?

▪ Just the endpoints (?x)

▪ Paths satisfying the constraint (together with ?x)
29

▪ Returning only endpoints

▪ Bag semantics: how many times? Can be infinite!

▪ Set semantics: just give me the nodes connected by a "good" path!

30

▪ Returning paths as well:

▪ There can be infinitely many (if a cycle is present)!

▪ How would you express this in SPARQL?

▪ What does bag semantics mean here?

31

▪ Using simple paths:

▪ No repeated nodes – cycles not a problem anymore

▪ Immediately leads to intractability [MW95]

▪ A reason to exclude them from SPARQL standard [ML12]

▪ No-repeated-edges:

▪ Similarly avoids infinity

▪ The semantics of Cypher

▪ Equivalent to simple paths

▪ If implemented in full (all matches) runs into the same issues

32

▪ Shortest paths:

▪ No infinity issues

▪ Allows bag semantics with endpoints (count all shortest paths)

▪ Allows returing paths

▪ Arbitrary paths:

▪ Can be infinite

▪ Works when returning endpoints with set semantics

▪ SPARQL standard

▪ Both options have good theoretical properties

▪ Many algorithms known for implementing them

33

▪ Theoretician's answer ("This is trivial"): [MW95]

▪ Graph is an automaton

▪ Regular expression is an automaton

▪ Do the cross product (on-the-fly to be "efficient")

▪ Do reachability check from start states to end states

▪ Which algorithms can do this?

▪ BFS

▪ DFS

▪ A*

▪ IDDFS

▪ ...

34

35

Kevin Bacon

Footlose

Crazy, Stupid, Love

Lori Singer

John Lithgow

J. Moore

Steve Carell

Dianne Wiest

Lori Singer

John Lithgow

Dianne Wiest

Steve Carell

Julianne Moore

:name

:name

:name

:name

:name

:actor

qmov

qact qend

:name

^:actor

:a
c

to
r

qmov

qact qend

:name

^:actor

:a
c

to
r

Kevin Bacon

qact

qmov

qact qend

:name

^:actor

:a
c

to
r

Kevin Bacon

Footlose

^:actor

qact

qmov

qmov

qact qend

:name

^:actor

:a
c

to
r

Kevin Bacon

Footlose

Lori Singer

^:actor

:actor

qact

qmov

qact

qmov

qact qend

:name

^:actor

:a
c

to
r

Kevin Bacon

Footlose

Lori Singer

Shortcuts

^:actor

^:actor

:actor

qact

qmov

qact

qmov

qmov

qact qend

:name

^:actor

:a
c

to
r

Kevin Bacon

Footlose

Lori Singer

Shortcuts J. Moore

^:actor

^:actor

:actor

:actor

qact

qmov

qact

qmov qact

qmov

qact qend

:name

^:actor

:a
c

to
r

Kevin Bacon

Footlose

Lori Singer

Shortcuts J. Moore

Julianne Moore

:name

^:actor

^:actor

:actor

:actor

qact

qmov

qact

qmov qact

qend

qmov

qact qend

:name

^:actor

:a
c

to
r

Kevin Bacon

Footlose

Lori Singer

Shortcuts J. Moore

Julianne Moore

:name

^:actor

^:actor

:actor

:actor

qact

qmov

qact

qmov qact

qend

▪ Can produce long/unintuitive paths

qmov

qact qend

:name

^:actor

:a
c

to
r

Kevin Bacon

qact

qmov

qact qend

:name

^:actor

:a
c

to
r

Kevin Bacon

Footlose Crazy,Stupid,Love

qact

qmov qmov

qmov

qact qend

:name

^:actor

:a
c

to
r

Kevin Bacon

Footlose

Lori Singer

Crazy,Stupid,Love

John Lithgow

qact

qmov

qact

qmov

J. Moore

Steve Carell

qact
qact

qact

qmov

qact qend

:name

^:actor

:a
c

to
r

Kevin Bacon

Footlose

Lori Singer

Crazy,Stupid,Love

John Lithgow

Julianne Moore

:name

qact

qmov

qact

qmov

J. Moore

Steve Carell

qact
qact

qact

Steve Carell

John LithgowLori Singer

:name
:name

:name

qmov

qact qend

:name

^:actor

:a
c

to
r

Kevin Bacon

Footlose

Lori Singer

Crazy,Stupid,Love

John Lithgow

Julianne Moore

:name

qact

qmov

qact

qmov

J. Moore

Steve Carell

qact
qact

qact

Steve Carell

John LithgowLori Singer

:name
:name

:name

▪ Gets the first result slower than necessary

qmov

qact qend

:name

^:actor

:a
c

to
r

Kevin Bacon

qact

Heuristic: get close to qend

qmov

qact qend

:name

^:actor

:a
c

to
r

Kevin Bacon

Footlose Crazy,Stupid,Love

qact

qmov qmov

Heuristic: get close to qend

qmov

qact qend

:name

^:actor

:a
c

to
r

Kevin Bacon

Footlose

Lori Singer

Crazy,Stupid,Love

John Lithgow

qact

qmov

qact

qmov

qact

Heuristic: get close to qend

qmov

qact qend

:name

^:actor

:a
c

to
r

Kevin Bacon

Footlose

Lori Singer

Crazy,Stupid,Love

John Lithgow

:name

qact

qmov

qact

qmov

qact

John LithgowLori Singer

:name

Heuristic: get close to qend

qmov

qact qend

:name

^:actor

:a
c

to
r

Kevin Bacon

Footlose

Lori Singer

Crazy,Stupid,Love

John Lithgow

:name

qact

qmov

qact

qmov

qact

John LithgowLori Singer

:name

Heuristic: get close to qend

...

▪ Seems to bring the best of both worlds

▪ So you would think this works

▪ Endpoints/set semantics

▪ No counting paths(standard)

54

55

▪ On top of RDF3X [GBS13]

▪ In-memory index used to compress graphs [SABW13]

▪ Implements BFS to evaluate property paths

▪ Good performance compared to other solutions

▪ Endpoint/set semantics

▪ SQL based approach [RSV15]

▪ Seminaive SQL-style recursion in SPARQL

▪ Can do decently when evaluating property paths

▪ Endpoint/set semantics

▪ Controlling recursion depth shown better than manual joins

56

▪ Query planners for path queries [YGG16]

▪ Uses automaton of the regex to plan evaluation

▪ Based on Postges

▪ Implemented using stored procedures

▪ Path index [FPP16]

▪ Assumes bounded repetitions (not Kleene star)

▪ Index "popular" path prefixes

▪ Rewrite the query and run joins over this

57

▪ On Linked Data [BDRV17]

▪ No data available locally (everything is accessed via an IRI)

▪ Tests how BFS/DFS/A* perform

▪ Allows incremental solutions and returning paths

▪ For a small amount of solutions runs better than existing engines

58

▪ MillenniumDB

▪ A persistend graph database engine

▪ Based on standard relational techniques tweaked for graphs

▪ Pipelined query evaluation

▪ WCO query planner (in conjunction with Selinger) [HRRS19]

▪ Full support for navigational queries [BDRV17]:

▪ Endpoints/set semantics

▪ Returning paths

▪ Bag semantics with shortest paths

59

▪ We use good old B+ trees

▪ Relations required:

▪ NodeLabel ... e.g. (n1, Person)

▪ NodeKeyValue ... e.g. (n1,gender,male), (e1,role,Bill)

▪ FromTypeToEdge ... e.g. (n1, :acts_in, n2, e1)

▪ and several of their permutations

60

▪ FromTypeToEdge ... e.g. (n1, :acts_in, n2, e1)

▪ Support for BFS/DFS/A*

▪ All implemented in a pipelined fashion (via a linear iterator)

▪ How to return a result as soon as it is encountered: B+tree iter stays live

61

▪ Some results on full WikiData (cca 1TB on disk)

▪ Q1 ... Bacon Number ... 160K results

▪ Q2 ... Places located in a Nato state ... 4.8M results

▪ Q3 ... Organizations dealing with EU capitals ... 17K results

▪ Q4 ... Where can I get to from the Netherlands ... 4K results

▪ Q5 ... Spouses of people born in a place in the US ... 35K results

▪ What do you think the best algorithm is?

▪ Recall, you are now reading data from disk

▪ You have pages pinned in the buffer

▪ You have auxiliary data structures to keep track of visited nodes

63

1

10

100

1000

10000

100000

Q1 Q2 Q3 Q4 Q5

ms

BFS DFS A*

Time to completion

▪ Basically, BFS wins in every experiment

64

▪ Still holding strong, but DFS/A* do well

▪ Identical graph with only 1% of all the results required

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5

10% of all the results

BFS DFS A*

65

▪ Why would BFS run so well?

▪ If we are also returning paths, it is orders of magnitude faster

▪ How many pages need to be pinned in the buffer?

▪ DFS: length of the current path (stack height)

▪ A*: all top elements on the priority queue

▪ BFS: just one (the item on the top of the queue)

▪ Also means parrallel executions are feasible for BFS

66

▪ We can return a single shortest path by default

▪ With a bit of tweaking can return all shortest paths

▪ Allows compositionality:

▪ What does a graph query return?

▪ Let's say a graph

▪ But which one?

67

▪ Construct the graph:

▪ All nodes/edges in fixed size pattern

▪ All shortest paths in path queries

▪ Assume that SELECT variables are your view of this graph

▪ [G-CORE] tried something along these lines

▪ GPU transitive closure

▪ Seems to be much faster that the classical one

▪ Shrinking the graph:

▪ Remove the noise, work with the paths alone

▪ Preliminary results promising, but no paths [AHNRRS21]

▪ Learning the relevant parts of the graph:

▪ Try to learn which part of the graph will be accessed by the query

68

▪ Understanding indexing schemes:

▪ With good guarantees/estimates

▪ Which scheme goes with which algorithm/approach

▪ Query plans based on automata, and not SQL-like plans:

▪ Transitive closure approach a good option, but maybe missing the point

▪ Compiling query into automata (what is the optimal one?)

▪ This line of work was started in [YGG16]

69

▪ Do we know how to implement a graph database?

▪ Does any existing system support path queries?

▪ Do classical algorithms suffice?

▪ Do we know what we want to implement?

▪ What types of queries

▪ Which semantics

▪ Ongoing standardization efforts

▪ Seems like there is work to be done ☺

70

Thank you!

71

▪ [AABHRV17] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter,
Domagoj Vrgoč: Foundations of Modern Query Languages for Graph Databases. ACM
Comput. Surv. 50(5): 68:1-68:40 (2017)

▪ [ACP12] Marcelo Arenas, Sebastián Conca, Jorge Pérez: Counting beyond a Yottabyte, or
how SPARQL 1.1 property paths will prevent adoption of the standard. WWW 2012.

▪ [BDRV16] Jorge Baier, Dietrich Daroch, Juan L. Reutter, Domagoj Vrgoč: Property Paths over
Linked Data: Can It Be Done and How To Start? COLD@ISWC 2016

▪ [F12] Wenfei Fan: Graph pattern matching revised for social network analysis. ICDT 2012:
8-21

▪ [LMV16] Leonid Libkin, Wim Martens, Domagoj Vrgoč: Querying Graphs with Data. J. ACM
63(2): 14:1-14:53 (2016)

▪ [V14] Domagoj Vrgoč: Querying graphs with data, PhD Thesis, University of Edinburgh,
2014

▪ [FPP16] George H. L. Fletcher, Jeroen Peters, Alexandra Poulovassilis: Efficient regular path
query evaluation using path indexes. EDBT 2016

72

▪ [BDRV17] Jorge Baier, Dietrich Daroch, Juan L. Reutter, Domagoj Vrgoč: Evaluating
navigational RDF queries over the Web, HT 2017

▪ [RSV15] Juan L. Reutter, Adrián Soto, Domagoj Vrgoč: Recursion in SPARQL. International
Semantic Web Conference 2015

▪ [MW95] Alberto O. Mendelzon, Peter T. Wood: Finding Regular Simple Paths in Graph
Databases. SIAM J. Comput. 24(6): 1235-1258 (1995)

▪ [LM12] Katja Losemann, Wim Martens:The complexity of evaluating path expressions in
SPARQL. PODS 2012: 101-112

▪ [YGG16] Nikolay Yakovets, Parke Godfrey, Jarek Gryz:
Query Planning for Evaluating SPARQL Property Paths. SIGMOD Conference 2016: 1875-
1889

▪ [CYDYW08] Jiefeng Cheng, Jeffrey Xu Yu, Bolin Ding, Philip S. Yu, Haixun Wang: Fast Graph
Pattern Matching. ICDE 2008: 913-922

▪ [GBS13] Andrey Gubichev, Srikanta J. Bedathur, Stephan Seufert: Sparqling Kleene - Fast
Property Paths in RDF-3X. GRADES 2013.

▪ [HHRRZ16] Daniel Hernández, Aidan Hogan, Cristian Riveros, Carlos Rojas, Enzo Zerega:
Querying Wikidata: Comparing SPARQL, Relational and Graph Databases. ISWC 2016

73

▪ [HRRS19] Aidan Hogan, Cristian Riveros, Carlos Rojas, Adrián Soto: A Worst-Case Optimal
Join Algorithm for SPARQL. ISWC 2019

▪ [SABW13] S. Seufert, A. Anand, S. J. Bedathur, and G. Weikum: FERRARI: Flexible and
Efficient Reachability Range Assignment for Graph Indexing. ICDE 2013

▪ [G-CORE] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George H. L.
Fletcher, Claudio Gutiérrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow, Juan F.
Sequeda, Oskar van Rest, Hannes Voigt: G-CORE: A Core for Future Graph Query
Languages. SIGMOD 2018

▪ [AHNRRS21] Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, Juan L. Reutter, Javiel Rojas-
Ledesma, Adrián Soto: Worst-Case Optimal Graph Joins in Almost No Space. SIGMOD 2021

74

