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Data-centric View of ML Pipelines
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We need mechanisms to understand, validate, clean, transform… data in ML pipelines in 
an end-to-end fashion!



Point of Failure of Data-Intensive Systems: Data Quality!

• Only 3% of companies are making decisions based on data 
that meets basic quality standards [Harvard Business Review 
2017]

• Most companies attempting to implement AI will fail and one 
of the primary reasons is the lack of enough clean training 
data [Techgenix 2019]

• We should also ensure that used data and algorithms, are 
making decisions based on individual merits and not on 
systematic bias that runs through our society!

An ML model is only as good as its data, and no matter how good a training algorithm is, 
the ultimate quality of automated decisions lie in the data itself!

https://fra.europa.eu/en/publication/2019/data-quality-and-artificial-intelligence-mitigating-bias-and-error-protect

European Union Agency for Fundamental Rights Data quality and artificial intelligence – Mitigating Bias and Error to 
Protect Fundamental Rights 2019



Example: Anomalies in Healthcare Data

Analysis Task: Detect possible abnormal measurements for a patient

- Why did M3 and M10 get a 
high score?
- Should I alert patients for 
health problems?
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2D Subspaces Explaining Anomalies: Local
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Local Explanation: Find subspaces that maximize anomalousness of individual samples
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Global Explanation: Find subspaces that summarize the anomalousness of as many 
samples as possible

2D Subspaces Explaining Anomalies: Global
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3D Subspaces Explaining Anomalies: Higher Dim.
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We don’t know in advance the dimensionality of ‘best explanations’! 
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Descriptive vs Predictive Anomaly Explanations

A feature subset that can maximize the 
anomalousness score of data as seen 

by a detector

A minimal subset of features leading to a 
predictive model that best approximates the 

decision boundary of a detector

Descriptive Explanation Predictive Explanation
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Predictive Explanation

Glucose

Bl
oo

d 
O

xy
ge

n

He
ar

t R
at

e

Blood Pressure



How Can We Produce Predictive Explanations ?
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PROTEUS Outcome and Design Choices

PROTEUS AutoML Output
Explaining 

Feature 
Subspaces

Reduced Dim 
Surrogate 

Model
Out-of-sample Performance 

Estimation

❶ How to treat the inherent imbalance nature of anomaly class ?
❷ How we avoid information leakage between train and test set ?
❸ How provide reliable performance estimates ?

PROTEUS AutoML Pipeline 
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Related Work & Baselines

Method Category Detector
Agnostic

Global 
Explanation

Predictive 
Explanation

SHAP
[Lundberg et al. 2017]

Black-box model 
explainer

✔ ❌ ❌

CA-Lasso
[Micenková et al. 2013]

Post-hoc anomaly 
explainer

✔ ❌ ❌

LODA
[Penvy T. 2015]

Explainable anomaly 
detector

❌ ❌ ❌

PROTEUS AutoML anomaly 
explainer

✔ ✔ ✔
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Real and Synthetic Datasets

Dataset 
Name

# Features # Samples Anomaly 
Ratio

IF LOF LODA

Synthetic 5 867 1% 0.96 1.0 0.92

Wisconsin 
Breast Cancer

30 377 5% 0.95 0.94 0.96

Ionosphere 33 358 36% 0.85 0.93 0.87

Arrhythmia 257 452 15% 0.80 0.74 0.75

Adding irrelevant features to the synthetic dataset:  77%, 88%, 92%, 94%, 96%
Adding irrelevant features to every real dataset: 30%, 60%, 90%

Characteristics Detectors AUC in Train
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Experimental Setting

• Each dataset was stratified and split to 70% training - 30% held out
• Up to 10 features were selected as explanation based on their scores
• Experimental Dimensions

Detectors (IF, LOF, LODA)

PROTEUS (fs, full, ca-lasso, shap, loda)

255 analyses 1 synthetic dataset 
and 3 real datasets

Datasets with irrelevant features 
5 for the synthetic and 3 per real dataset
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PROTEUS Performance Estimation

Q: Do the design choices of PROTEUS contribute to provide an accurate performance
estimation ?

• Each point represents the train and test 
performance for a particular analysis

• The dashed black diagonal line indicates 
the zero bias 

• The red line is the loess smoothing curve 
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Ablation Analysis

• PROTEUS with BBC and CV with Grouping gives 
the most accurate estimation

BBC & 
Grouping

No BBC & 
Grouping

BBC & 
No 

Grouping

No BBC & 
No Grouping

0.05 0.88 0.11 0.25

Residual Sum of Squares of the 4 design choices

Q: How is the accuracy of performance estimation affected by different design choices ?
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Relevant Features Identification Accuracy

Q: What is the precision and recall of discovered features w.r.t. synthetic gold-
standard of anomaly explanations (with 5 relevant features)?

• Feature selection algorithms of PROTEUSfs
exhibit the highest overall precision 
suboptimal recall

• Unlike SHAP and CA-Lasso, PROTEUSfs
exhibits a robust performance when 
varying data dimensionality, regardless of 
the employed detector

• PROTEUSfs approximates well the recall of 
the explainable detector LODA which is 
the upper performance limit
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Contrasting PROTEUS Surrogate Models With 
Unsupervised Anomaly Detectors

• Ionosphere Dataset (33 Features)

Proteus Anomaly Proteus Normal 28

Proteus Agreement with LOF 
(9 features explanation)

Proteus Disagreement with LOF 
(9 features explanation)



Conclusion
• Anomaly explanation  ⟶ a supervised classification 

problem with feature selection  ⟶ solved effectively as 
an AutoML problem

• First methodology for predictive, global, detector-
agnostic anomaly explanations

• PROTEUS is robust and effective discovering features 
relevant to anomalies

• Adequate design choices (Oversampling, BBC, CV with 
Grouping) ⟶ accurate approximation of a detector’s  
decision boundary ⟶ accurate performance estimation
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In Greek mythology, Proteus (Πρωτεύς) is an early 
prophetic sea-god or god of rivers and oceanic 
bodies of water, one of several deities whom 
Homer calls the "Old Man of the Sea" 
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Questions?

https://thenextweb.com/contributors/2018/10/06/we-need-to-build-ai-systems-we-can-trust/



The Three Pillars of xAI

Valérie Beaudouin, Isabelle Bloch, David Bounie, Stéphan Clémençon, Florence d’Alché-Buc, et al. Flexible and 
Context-Specific AI Explainability: A Multidisciplinary Approach. 2020. hal-02506409 33



Creating a Predictive Explanation for Feature 
Importance Methods using PROTEUS
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The Effect of Oversampling on Performance

• Effect  of  increasing  pseudo-sample  size  per  anomaly  on  AUC  test performance
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