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Formal Query Languages are still Hard

* Non-technical and casual users are overwhelmed by technical issues
from formal query languages

* SQL was initially developed for executive people to use

* Reality: even trained users face problems to write correct queries
[Bowen@WITS'04]

* Users must be aware of:
* The details on the schema of each DB
* The semantics of each DB element mentioned in the query
* The ways for joining information in the DB
* The syntax of the query language

Natural Language Interfaces for DBs

* Allow casual users to access information stored in
DBs using queries expressed in natural language l

* The “philosopher's stone” of DB interfaces
[Codd@IFIP’1974]

“The only way to encourage the
casual user to interact with a
database system is to allow free use
of their native language.”

Edgar Frank “Ted” Codd
Creator of the Relational Model




Example [Affolter@VLDBJ’19]

Show me all What are the
. . i i movies with the
movie Brad Pitt movies with
the actor Brad actor Brad
Pitt. Pitt?

SELECT m.title

FROM Movie m JOIN Starring s ON s.movieId =m.id
JOIN Actor a ON a.actorId=s.actorId
JOIN Person p ON p.id = a.actorId

WHERE p.FirstName="Brad" AND p.LastName="Pitt"

NL Interfaces for DBs — Challenges

* Requirements
* Understand the user’s intention or information needs when
formulating the query.
* Correctly represent this intention in a structured query language
* Ultimately, it would imply in solving the general problem of Natural
Language Understanding (NLU)
* NLU is hypothetically one of the Al-Hard problems

* Thus, all current systems are necessarily approximated and limited,
considering the Codd’s statement

NL Interfaces for DBs — Limitations

* All existing methods use general pre-processing techniques
* Each one is based on assumptions on the NL queries they support
* Many times, these hypothesis are not explicit

* Examples of techniques/resources
* Rules
* Lexicons, ontologies, dictionaries, etc. k

* Training
* User interaction
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NL Interfaces for DBs — Evaluation

* There is no full understanding of how good techniques really are
* It is unknown how applicable they would be to real world situations
« Different studies, based on different datasets

* Often have limitations and assumptions, implicitly hidden in the
context or datasets.

* Some evaluation metrics are commonly used, but they are quite
simplistic and do not adequately represent the quality of results.




NL Interfaces for DBs — Evaluation

* Benchmark queries for NLDB qualitative evaluation [Affolter@VLDBJ'19]

NL Queries Likely Operations
Ql Who is the director of ‘Inglourious Basterds’? Join + String-based Selection
Q2 All movies with a rating higher than 9. Join + Range-based Selection
Q3 All movies starring Brad Pitt from 2000 until 2010 Join + Date-based Selection
Q4 Which movie has grossed most? Join + Agreagation/Orderin
Q5 Show me all drama and comedy movies. Join + Unido
Q6 List all great movies. Concept/Subjectivity
Q7 What was the best movie of each genre Join + Aggreagation
Q8 List all non-Japanese horror movies. Join + Negation-based Selecion
Q9 All movies with rating higher than the rating of ‘Sin City’. Join + Subquery
Q10 All movies with the same genres as ‘Sin City’. Join + Subquery

Demand and Opportunities

* Demands

* Popularization of IR Systems - Search Engines: Users
become used to explore by themselves

» Data Scientist, Data Journalists

* Democratization of access to online DBs for casual OPPORTUNITY,
users

* Massive use of conversational interfaces

* Opportunities:

* Technical maturity in NLP, ML & IR allow extracting
text semantics with precision and efficiency
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Increasing Interest - DB Community

* ICDE 2020: 4 papers :

* SIGMOD 2020: 5 papers, one tutorial lc”gmza ﬁnﬁ: ¢ IEEE
* VLDB 2020: 3 papers, one tutorial

* ICDE 2021: 4 papers

* SIGMOD 2021: 3 papers

* VLDB 2021: 1 paper so far

¢ Xhan Shawrod, Chine
SIGMODYPODS 2021




Visions: Data versus Language

* Data-Centric Systems (DCS):

* Focus: Map references to DB elements occurring in the query

* Use rule-based techniques to map NL query words to SQL clauses

* Less dependent on the DB; More dependent on variations in NL queries
* Language-Centric Systems (LCS):

* Focus: Instance of the automatic language translation problem

* Use Deep Learning models and algorithms

* More dependent on the DB; Less dependent on variations in NL queries

Visions: Data versus Language

Language-Centric

NSP [lyer@ACL'17]
; Seq2sQL [Zhong@CoRR'17
Data-Centric SQLNet [Xu@CoRR'17]
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Templar [Baik@ICDE'19] PT-MAML [Huang@NAACL-HLT'18]
ATHENA [Saha@PVLDB'16] TypeSal [Yu@NAACLHL'18]
ATHENA++ [Sen@PVLDB20] SyntaxSQLNet [YU@EMNLP'18]
GNN [Guo@ACL'19)
IRNet [Bogin@ACL'19]
Photon [Zeng@CoRR'20]
DBPal [Weir@SIGMOD’20]
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Data-Centric Systems (DCS)

NaLIR [Li@PVLDB'14]

* Natural Language Interface for Relational databases

* F. Li and H. V. Jagadish — DBGroup University of Michigan

* Best Paper VLDB, 2014

* Often used as a baseline in evaluation experiments with other DCS

* Original code and datasets: https://github.com/umich-dbgroup/NaLIR

* Python implementation by our group:_http://t.ly/CM9
* Jupyter notebook prepared by Genoveva and Javier Espinosa, thanks!

NaLIR [Li@PVLDB'14]
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NaLIR [Li@PVLDB’14] - Parsing

* Dependency parsing: task of finding syntactic dependencies in a sentence.

* Syntactic dependencies: asymmetric binary relationship between words
* Includes grammatical roles (subject, object, determinant, modifier)

* Results in a syntactic dependency tree

* Uses the well-know Stanford Parser [Marneffe@LREC'06]
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NaLIR [Li@PVLDB’14] — Parsing
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NaLIR [Li@PVLDB’14] — Node Mapper

* |dentifies nodes that can be mapped to SQL
components

* Uses a table manually constructed that maps NL
phrases to SQL clauses

* Problems: Node Type Corresponding SQL Component

* Some nodes are not mapped Select Node (SN) SQL keyword: SELECT
Operator Node (ON) | an operator, e.g. =, <=, I=, contains

* Some nodes have multiple mappings
Function Node (FN) an aggregation function, e.g., AVG

Name Node (NN) a relation name or attribute name

Value Node (VN) a value under an attribute
Quantifier Node (QN) | ALL, ANY, EACH

Logic Node (LN) AND, OR, NOT

NaLIR [Li@PVLDB’14] — Node Mapper
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NaLIR [Li@PVLDB’14] — Tree Adjustor

* Analyzes the dependency tree with the mapped nodes
* Generates Query Trees — candidate interpretations of the NL query

* It can also adjust candidate query trees to make them syntactically
valid considering the SQL language

* Ranks the candidate query trees
* The "best" of them leads to the SQL query

* Adjustment and ranking based on a series of fixed heuristics.




NaLIR [Li@PVLDB’14] — Tree Adjustor

| User Interface |

return authors

who have more
papers than
Bob in VLDB

after 2000

NLQ \n(erprslat\ons1 lchoice

| Interactive Communicator

Candidate i Candidate v
Mappings1 lcmme Query Trees lC"O'Ce

Dependency | Parse Tree Parse Tree Parse Tree
Parser Node Mapper Structure Adjustor
S —
Data index &
schema graph

Parse Tree &

ROOT ™
| return (SN: SELECT) " " RooT
return author (NN: author) ™) ROOT retam more
; more (ON: >) hor  number of number of
author paper (NN: publication) rotim more author ; ;
— T Bob (VN: author.name) | paper paper
paFer B?b af}er VLDB (VN: conference.name) author paper Bob Ul VDB Sor BOD VLDB Ser
after (ON: >) | |
more VLDB 2000 2000 (VN: publication.year) VLDB a"’e' 2000 2000
2000

NaLIR [Li@PVLDB’14] — User Interaction

* Several problems can arise in the process
* Parsing can generate spurious nodes from the query point of view
* Mapping can fail or be ambiguous
* Tree adjusting and ranking may fail
¢ In all these cases, the user is called to intervene
* Perform adjustments and changes manually.

With User  No User
Experiments with the Microsoft l Queries Interaction Interaction

Academic Search DB Easy 34/34 24/32
Medium 34/34 23/34
Hard 20/30 15/32

NaLIR [Li@PVLDB’14] — User Interaction
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Templar [Baik@ICDE'19]

* From the same group that created NaLIR
* Attempt to decrease user dependency
* Proposes relying on information mined from a query log

* Uses optimization techniques to improve:
* Mapping of words in the NL query to DB elements
* Join path generation




ATHENA [Saha@PVLDB'16]

* Ontology-driven system to

* Enable NL queries over relational DBs
* Developed at IBM
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ATHENA [Saha@PVLDB’16] - Fase 1

* Phase 1: NL query Interpretation

* Maps each query word to ontology elements to which it may refer

* Ex: "Mirian" mapped to Article.Author and Event.Coordinator
* Mapping combinations yield various interpretations of the LN query
* Each combination corresponds to a tree in the ontology graph

* Interpretation Trees or ITree

* Finding these trees is a variation of the Steiner Tree Problem
* An NP-Complete problem

ATHENA [Saha@PVLDB’16] - Example
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ATHENA [Saha@PVLDB’16] - Example (2)

Domain
Ontology

Ve Institutional @c “restricted stock”
Investment Investment
“since 2012” dsa Personal reported_year
~ Investment
reported_year
“vear” <\ Investment - purchase_year

Show me restricted stock Transaction
. . . investedin,
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since 2012 by investor [ Investee ] [ Investor ] £
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ATHENA [Saha@PVLDB’16] - Example (3)
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Investment Investment
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ATHENA [Saha@PVLDB’16] - Fase 2

* Phase 2: Structured Query Generation
* Relies on an Ontology-to-Database Mapping (MDG)
* Describes how elements of the ontology are mapped to the DB elements
* (concepts, property, relationships) => (tables, views, columns, FKs)
* The "best" ITrees transformed into queries according to the MDS
* Ontology Query Language (0QL):
* Intermediate language used to allow logical independence
* Query Translator : OQL to SQL
* Other QLs can be used
* ATHENA provides a ranked list of the queries
* The user can choose the most appropriate

ATHENA++ [Sen@PVLDB'20]

* Extends ATHENA to cover complex nested queries

* The original query is partitioned into possible nested queries,
according to a predefined taxonomy.

User
| NL Query
Nested Query Detector
Evidence Operation
Annotator Annotator
Nested Query Classifier

Evidence Partitioner

Transaction.type Ti ion.time yAmount.value

Show me everyone who bought stocks in 2019 that have gone up in value

Relational Person, Liste:

Results

Nested Query Builder (LD Contract Party,
Interpretation Join Condition " '
== .~ Auonomous Agen I
af Evidence Set ES; (" Evidonce Set ES;
@ 3 - stocks Jue Nosted Query Token = J s
Ranked OQL Queries c Bveryone.  stocks. Ve {gone up) stocks  yape
Ontology to bought in 2019
Bt - LB

Mapping

Language-Centric Systems (LCS)




Language-Centric Systems (LCS)

* Emerged mainly from the NLP community

* Main advantage: rely on machine learning instead of fixed rules
* E.g., trained to recognize: “major cities” => “city.population > 150,000”

* Explore state-of-the-art Deep Learning techniques

* Specifically: sequence conversion method - Seq2Seq

* Challenge: Training
* Needed for each target database
* May involve queries and instances
* Sometimes costly and error-prone

Sequence-to-Sequence Models (Seq2Seq)

* A Neural Network Model

* Transforms a sequence of elements into another sequence of elements
* Includes two networks: an Encoder (COD) and a Decoder (DEC)

* COD: takes an input sequence and maps to an n-dimensional vector

* DEC: takes the vector and transforms it into an output sequence.

* Most typical application example is machine translation

Coder (COD) and Decoder (DEC)

* Imagine COD and DEC as translators, each one speaking two languages.
* The first language is the mother tongue, which differs between the two
* For example, Portuguese and French

* The second is an imaginary language that the two speak
* This correspond to the n-dimensional vector

* To translate Portuguese into French
* The COD converts a Portuguese phrase into the imaginary language
* As the DEC is able to read the imaginary language, it can translate the phrase into
French.

Coder (COD) and Decoder (DEC) (2)

* Suppose that, initially, neither COD nor DEC are very fluent in the
imaginary language.
* So that they can learn, we train them with several examples

* This corresponds to the model training
* Usually implemented with Recurrent Neural Networks (RNN)
* Alternatives: LSTMs, Bi-LSTMs, GRU, transformers, ...
* Stacked nets can be used.

* Top-layer output states are the final representation




Encoder-Decoder Networks
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Jurafsky & Martin, 2019

Word Embeddings

* Neural models manipulate vectors

* In the case of text, embeddings are vectors that represent words
* They can also represent sentences, documents, and even attributes of a table!

* In the case of words: word embeddings — semantics inferred from context

* Example:
* Predict the following word given a prefix:
* "When | got home, | forgot to feed the "
* Suppose we see the following training sentence:
« " When I get home, | have to remember to feed the cat"
* Atraditional model can predict "cat" but not "dog"
* A neural model can assign high probability also to "dog”
* Considering that "cat" and "dog" have similar embeddings

Pre-training and Word Embeddings

* Models assume the existence of previously generated embeddings for a

large set of words.

* In many cases, the embeddings obtained with methods such as
word2vec are sufficient to get good results.

* There many more recent and powerful methods

* The process of generating word embeddings and its properties are itself

a subject worth discussing.

Distributional Hypothesis & Vector Semantics

* Distributional Hypothesis (HD)
* Words with similar meanings tend to occur in similar contexts.
* Formulated in the 1950’s by several linguists

* Vector Semantics

* Instantiates the HD, creating representations of the meaning of words, called
embeddings, from their distributions in a corpus.

* Used in NLP applications to exploit word semantics
* Base for more powerful word representation (e.g., ELMo and BERT)

* Representation Learning: embeddings can be learned automatically
from input texts




Distributional Hypothesis - Example

* What is Jambu ?

* The word was seen in the following contexts:
* "Jambu is delicious sautéed with garlic"
* "Jambu is excellent on rice"
e "...Jambu leaves with salty sauces..."
* Some of the words in the above texts were seen in
contexts such as:
« "... spinach sautéed with garlic over rice ..."
* "... chard stems and leaves are delicious..."
« "... collard greens and other salted vegetables..."

Adapted from Jurafsky & Martin, 2019

Distributional Hypothesis - Exampwg

* What is Jambu ? ﬁ

* The word was seen in the following contexts:
* "Jambu is delicious sautéed with garlic"
* "Jambu is excellent on rice"
e "...Jambu leaves with salty sauces..."

* Some of the words in the above texts were seen in
contexts such as:
« "... spinach sautéed with garlic over rice ..."
» "... chard stems and leaves are delicious..."
« "... collard greens and other salted vegetables..."

Adapted from Jurafsky & Martin, 2019

Vector Semantics

* Words represented as vectors or embedding in a multidimensional
semantic space

* Allows to estimate the similarity between words (or sentences).

* Combines two intuitions: Distributional Hypothesis and
representation of words as numerical vectors.

* There are several versions of vector semantics, each one defining the
elements of the vectors in slightly different ways.

* In general, all of them are based on some form of weighted count of
neighbor words

Word Embeddings Examples
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Word2Vec

* Algorithm Skip-gram with negative Sampling [Mikolov@NIPS'13]
* Method for generating short and dense embeddings

* Including in the word2vec package and therefore is commonly called
word2vec.

* Fast, efficient for training.
* Available online with code and pre-trained embeddings.

* Other popular methods:
* GloVe [Pennington@EMNLP’14] e fastText [Bojanowski@TACL'17]

Word2Vec - Intuition

* Instead of counting how often each word occurs next to a word W, train a
binary classifier to calculate the probability of words occurring near w.
* The embedding is formed from the weights of the learned classifiers.

* Revolutionary intuition: we can use the current text as an implicitly
unsupervised training corpus for this classifier;

* A word V occurring near W acts as a positive example.
* Avoids the need for any type of manual labeling

* Proposed in the context of neural language models [Collobert@JMLR'11]

Language-Centered System (LCS)

* Use pre-trained embeddings to encode and represent:
* Queries in Natural Language
* Database schemas

» Database Instances - all tuples with attribute values
* SQL query generated using Seq2Seq models
* All current systems are supervised

* Many consider that the DB contains a single table

LCS - Benchmarks

* Many LCS are focused on a specific benchmark

Seq2SQL [Zhong@CoRR'17]

wikisaL 26,531 tables 80,654 <NL,SQL> pairs SQLNet [Xu@CoRR’17]
[Zhong@CoRR'17] extracted from No joins Coarse2Fine [Lapata@ACL'18]
(PR R - Wikipedia Labeled with MecTurk STAMP [Zhou@ACL'18]
- - HTML tables PT-MAML [Huang@NAACL-HLT’18]
TypeSQL[Yu@NAACL-HLT'18]
Spider
[Yu@EMNLP’18] 200 DBs 10.181 NL and 5.693 SyntaxSQLNet [Yu@EMNLP’18]
https://yale-lily.github.io//spider 128 domains SQL Include Joins GNN [Guo@ACL'19]

~5 tables/DB Labeled by 11 Grads IRNet [Bogin@ACL'19]




Seq2SQL [Zhong@CoRR'17]

* Developed at Salesforce Research
* Introduces WikiSQL Benchmark - used for training and testing
* Takes advantage of the inherent structure of SQL queries

* Encodes the NL query and a target table
* Predicts each part of the SQL query separately

Seq2Seq Models

Seq2sQL SELECT

Aggregation
classifier COUNT SQL Query

SELECT column 7
2 Engine
inter

WHERE clause WHERE
pointer Driver =
decoder Val Musetti

How many
engine types did
Val Musetti use?
Entrant
Constructor

NL Query

Table Scheme

Seq2SQAL [Zhong@CoRR’17] - Inference

* Aggregation operations

How many Seq2sQL SELECT
* An RNN encodes NL query engine types did =
. Val Musetti use? Aggregation COUNT
* 4 possible outputs: . classifier
« COUNT, MIN, MAX or NONE PR SEf:g “"“’""]—» Engine

Chassis

* Columns in SELECT (Projections)

WHERE clause
pointer
decoder

* An RNN encodes combinations of the query

WHERE
Driver =
Val Musetti

and each column

* WHERE Clause (Selection Predicates)
* An RNN encodes the query, each column
and subset of the SQL vocabulary
* Pointer Network: Output Vocabulary is made
up of input words

* Does not support joins

Seq2SQL [Zhong@CoRR’17] — Training

* Given the columns of the table, for each NL query, generates a
candidate SQL query that runs on the DB

* The result of the execution is used as a reward to train a
reinforcement learning algorithm

Generated SQL

— )
Seq2SQL Database

Reward

f Predicted results

{Question, schemaH Ground truth results }

Seq2SQL [Zhong@CoRR’17] - Training (2)




Seq2SQL [Zhong@CoRR’17] — Similar Systems

* Many other similar systems also encode the DB at the input and
decode the output using pointer networks
* Some also assume a SQL (Slot-Filling) template:
* SQLNet [Xu@CoRR'17], Coarse2Fine [Lapata@ACL 18]
* TypeSQL[Yu@NAACL-HLT'18]

* Others decode the SQL query as a sequence of words
* STAMP [Zhou@ACL'18], PT-MAML [Huang@NAACL-HLT’18]

* Others decode the SQL query into a syntax tree
* IRL [Bogin@ACL'19], GNN [Guo@ACL'19], SyntaxeSQLNet [Yu@EMNLP'18]

DBPal [Weir@SIGMOD’20]

* Johns Hopkins Univ. ,TU Darmstadt e Brown Univ.
* Seq2Seq + attention mechanisms
* Focus on using a limited volume of training data

* Generates synthetic training examples
* Technique known in ML as data augmentation
* Uses templates and paraphrase

* Improves overall translation precision

* Increases robustness to language variations

DBPal [Weir@SIGMOD’20]

* Output Vocabulary
* Schema elements in output vocabulary, not input
* This vocabulary also includes SQL keywords and constant values

* Narrower vocabulary than usual in Seq2Seq: reduces complexity
* DEC: Chooses words from this vocabulary to generate the SQL query as the
resulting sequence
* Consequences
* Model specializes in target BD
* Can only process a query if it contains vocabulary words
* Model needs to be trained for each new database

DBPal [Weir@SIGMOD’20] - Training

Training phase Runtime phase
* Relies on multiple SQL query SQLNL i o NL Query
templates | 1
* For each template, there is 1 or senema AT ey
more NL templates S | \
. . Iexicons Lemmatizer
* Training generator: e
* Instantiate NL templates with Generated training set; |
schema elements. “What are cities whose state is
. . Massachusetts?” » Neural Translator
* NL slots filled with words/phrases T s s ‘
from a manually constructed «Show me average population 3 \
of cities for each state”
dictiona ry. SELECT state, AVG(population) —

FROM cities GROUP BY state
. DBMS Post-processor




DBPal [Weir@SIGMOD’20] - Training (2)

* Example Template
* SQL: SELECT {Att}(s) FROM {Table} WHERE {Filter}

¢ LN: {SelectPhrase} the {Att}(s) {FromPhrase} {Table}(s) {WherePhrase} {Filter}

* Exemple of an instantiated template
* SQL: SELECT name FROM patient WHERE age=20
* LN: Show me the name of all patients with age 20
* Currently, there are about 100 templates

* Typical training sets
* DBs with a single table: ~1 MM <NL,SQL> template pairs
* DBs with more tables: ~2 to 3 MM <NL,SQL> template pairs

DBPal [Weir@SIGMOD’20] - Training (3)

* Augmentation: Generation of synthetic pairs

* Goal: covering a broad spectrum of linguistic
variations for the same SQL query.

* Add pairs <NL,SQL> with linguistic variations in NL

* Words and subphrases randomly exchanged in NL
queries, using paraphrases provided by the
Paraphrase Database (PPDB)

* Show patients names with age @AGE => Display
patients names with age @AGE.

* Lemmatization: normalize words in <LN, SQL>
* E.g.:"cars"and "car's" replaced by "car"”

* Also applied in run time

Training phase

SQL-NL pairs
templates

Schema Augmentation

Slot-fill
lexicons

I - "

“What are cities whose state is
Massachusetts?"

SELECT name FROM cities
WHERE state = ‘Massachusetts’

“Show me average population
of cities for each state”
SELECT state, AVG(population)
FROM cities GROUP BY state

Generator

|

|

Lemmatizer

|

Runtime phase

NL Query

l

Parameter
Handler

|

Lemmatizer

|

Neural Translator

|

Post-processor

DBPal [Weir@SIGMOD’20] — Execution

Training phase
* Neural Translator: translates the query S g —
* OQutcome from training. |
* Query constants replaced by markers Schema Augmentation
(placeholders) s |
* Makes the query independent from the DB Lemmalizer
state used in the training. \

“What are cities whose state is
Massachusetts?”

SELECT name FROM cities
WHERE state = ‘Massachusetts’

* Then, the lemmatizer is applied

* Postprocessor: Replaces markers with
constants

“Show me average population
of cities for each state”
SELECT state, AVG(population)
FROM cities GROUP BY state

* The query can run in the DBMS

DBMS

Runtime phase

NL Query

|

Parameter
Handler

|

Lemmatizer

I

|

Neural Translator

- Post-processor

Queries over Multiple Tables




Queries over Multiple Tables

References to DB

will smith films

* Possible approach: Generation of Candidate Networks PERSON MOVIE
O | Name ID | Title Year
. Problem: 4 7T T Wall Smith ts | 6 | Men in Black IQQZ
t. 2 | Will Theakston tz] 7 | Lam Legend 2007
* Given a set of references to DB elements, generate a join expression that ol 3 Maggie Smith ts | 8 | Harry Potter and the Sorcerer’s Stone 2001
tri ioint tupl that best satisf Il of th f td 1 ls B ty | 6 | The Lord of the Rings: The Fellowship of the Ring | 2001
retrieves joint tuples that best satisty all ot these rererences ! can Bean t10 | 10 | The Lord of the Rings: The Return of the King 2003
t; | 5 | Elijah Wood " X .
tip | 11 | Silent Hill 2006
* Concepts:
. . CASTING
* Each reference may correspond to different sets of tuples in the DB CHARACTER HOLE ID [ Person_ID | Movie 1D | Char 1D | Role ID
 Query Match: Combination of tuples sets that satisfies user need , IB 1:;;;‘:] D | Name b ) 2 . S I "
12 £ o 26
. . . . . t 19 Acto
* Candidate Network: join expression that retrieves a Query Match tiz | 13 | Robert Neville il B AE,U_:% tyr | 27 2 8 14 19
. . tiy | 14 | Marcus Flint 251 | Producer | 25| 28 3 8 15 20
 Alternatively: a matching tree extracted from the DB schema seem as a graph tis | 15 | Minerva McGonagall ?1 5 \&;’iile“r‘“ too | 29 4 9 16 19
t1g | 16 | Boromir 2 : - ts0 | 30 4 10 16 19
tyr | 17 | Frodo Baggins i‘” ii E:ir:(mr ty | 31 4 11 18 19
{15 | 18 | Christopher da Silva 2 1tor ty | 32 5 9 17 19
ty | 33 5 10 17 19
References to DB References to DB PERSON[Wil] PERSON[Will]
— . . g : — ‘RS i %] X4
11 smiith PERSON[Will Smith] ~ PERSON[Will Smith] O P RSON S CASTING
will smith films —  MOVIE Title x CASTING )~ will smith films RSON[Smith] MOVIE Title
— MOVIE. Title ~ - MOVIE.Title >4 CASTING X Candid
Query Match 1 Candidate Query Match 2 PERSON[Smith] Na: I akt;
etwor
PERSON MOVIE Network 1 PERSON MOVIE
1) S ID | Title Year D | Name ID | Title Year
I p 1 \Vlmil] Smith ts | 6 | Men in Black 1997 ¢ T Wil Smith tg | 6 | Men in Black 1997
t‘ T t; | 7 | Tam Legend 2007 | t‘ 5 | Will Theakston | | t- | 7 | I am Legend 2007
t‘2 /2\\ Mageic Smith ts | 8 | Harry Potter and the Sorcerer’s Stone 2001j ~_ 2 Nazeic Smith T ts | 8 | Harry Potter and the Sorcerer’s Stone 2001 j‘ ~_
3 &8 ty | 6 | The Lord of the Rings: The Fellowship of the Ring | 200) y LA “J ty | 6 | The Lord of the Rings: The Fellowship of the Ring | 200 y
L Sean Rean Lo ) : set of tuples Sean Bean 1\ Lo . ) : set of tuples
d tip | 10 | The Lord of the Rings: The Return of the King 200 i § Eliiah Wood | t10 | 10 | The Lord of the Rings: The Return of the King 200 i §
set of tuples > tyy | 11 | Silent Hill 200 matching films an hood I\ fyy | 11 | Silent Hill 200 matching films
matching | ‘w‘ \
will smith CASTING — | CASTING
ER ROLE ID | Person 1 Movie_ID | Char_ID | Role_ID set of tuples ER LE ID | Person 1D | Movie ID | Char_ID | Role_ID
ID | Name tys | 25 1 6 12 19 . ) set of tuples tys | 25 12 19
ID | Name - matching will X > DD [ Name
tip | 12 | Agent J Ly | 26 1 7 13 19 tch mith to | 26 13 19
t 19 Actor matching s 19 Actor
t13 | 13 | Robert Neville t‘“ 20 | Actress tor | 27 2 8 14 19 {13 | 13 | Robert Nevi 20 | Actress tor | 27 14 19
tis | 14 | Marcus Flint FSS I S B 3 8 15 20 t14 | 14 | Marcus Flint ; 31 | P |t | 28 15 20
t15 | 15 | Minerva McGonagall t” 29 Wit lag | 29 4 9 16 19 t15 | 15 | Minerva McGonagall 1‘21 29 Wit tag | 29 16 19
tig | 16 | Boromir t‘” » D_“ etr ) Ly | 30 4 10 16 19 {16 | 16 | Boromir t” » D_” etr ty | 30 16 19
ti7 | 17 | Frodo Baggins 25 Ezﬂ‘;;fn s | 31 4 11 18 19 {17 | 17 | Frodo Baggins 25 E;riizror ty | 31 18 19
tis | 18 | Christopher da Silva 2 s | 32 5 9 17 19 t1g | 18 | Christopher da Silva “ ta | 32 17 19
ty | 33 5 10 17 19 tay | 33 17 19




Candidate Networks Generated

will smith films

D Name ID  Person_ID Movie ID ID Title Year
1 Will Smith 25 1 6 6 |Men in Black 1997
1 Will Smith 26 1 7 . 7 | Tam Legend |2007

will smith films

ID Name ID Person_ID Movie ID ... ID Title Year ID Person_ID Movie_ID ... 1D Name

Hze Pottes 1 the
2 |Will Theakston 27| 2 § ..oy myiomerandd 2001 28 3 8 |..|3 Maggic Smith

Sorcerer’s Stone

Candidate Network Generation

* Combinatorial Problem: answers must include all references
minimally, i.e., without redundancies

* Example: Mondial Database (CIA Factbook)
* 28 tables, 17,115 tuples, 104 FKs

* For the query "South East" :
* 208 possible Query Matches

* 105 possible Candidate Networks
* Up to 10 tables involved

Candidate Network Generation - Approaches

* Problem raised in the context of the DISCOVER system
[Hristidis@VLDB'02], pioneer work in keyword queries over DBs

* A series of works produced in our group improved the efficiency in
the generation process and the quality of the Candidate Networks
* Efficient Generation of Candidate Networks
* [Oliveira@ICDE'18] and [Oliveira@TKDE'20]

* Ranking of Candidate Networks
* [Oliveira@ICDE'15] and [Oliveira@TKDE’20]

Conclusion and Remarks




What was not covered here ...

* Systems for keyword queries in relational BDs
* [Yu@IDEB'10] : A little old survey
* [Affolter@VLDBJ'19] : Much more recent. It also covers various DCS
* Experimental Results
* [Kim@PVLDB'20]: Excellent recent survey with experimental results of several
NLIDBs with various benchmarks.
* Applications in Conversational and Dialogue Systems

* [Ozcan@SIGMOD'20]: Tutorial at SIGMOD 2020.
* Authors from the ATHENA/ATHENA++ group at IBM. It also covers several NLIDBs.

Some Further Developments

* Database Exploration - Tool for Data Scientists and Analyst
* Doctors, biologists, financial analysts, lawyers, marketing staff, ...
* Old proposal [Dar@VLDB'98], but only recently carried out.
* Examples: SODA [Blunschi@VLDB'12] and ATHENA [Lei@I|DEB'18]

* Natural language as inter-model Lingua Franca
* Polystores [Duggan@SIGREC'15]: Federations of DBs with multiple data models

* Data Lakes : centralized repository of raw or minimally cured data available to
perform analytical activities [Terrizzano@CIDR'15]

* |dea explored with keyword queries at INRIA [Hadda@CoRR'20]

* Somewhat surprising connection with the schema evolution problem
* More "relaxed" queries are less vulnerable to changes in the DB schema

* |dea explored in LESSQL [Afonso@SANER'20] developed by our group.
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