
DOING@MaDICS
5 July 2021

Say the word, and You'll be Free:
Methods and Techniques for
Natural Language Database Interfaces

Altigran da Silva
BDRI@UFAM
Manaus/Brazil

Topics
• NLIDB: Motivations, Challenges, Limitations, Demands and Opportunities

• Visions: Data versus Language

• Data-Centric Systems (DCS):
• NALIR, TEMPLAR, ATHENA and ATHENA++

• Language-Centric Systems (LCS)
• Background: Seq2Seq Models and Embeddings
• Seq2SQL and DBPal

• Queries over Multiple Tables

• Conclusions, Remarks, Developments and References

• Hands-on: implementation of an NLIDB in Python

Formal Query Languages are still Hard

• Non-technical and casual users are overwhelmed by technical issues
from formal query languages
• SQL was initially developed for executive people to use
• Reality: even trained users face problems to write correct queries

[Bowen@WITS’04]
• Users must be aware of:

• The details on the schema of each DB

• The semantics of each DB element mentioned in the query

• The ways for joining information in the DB

• The syntax of the query language

Natural Language Interfaces for DBs

• Allow casual users to access information stored in
DBs using queries expressed in natural language
• The “philosopher's stone” of DB interfaces

[Codd@IFIP’1974]

“The only way to encourage the
casual user to interact with a

database system is to allow free use
of their native language.”

Edgar Frank “Ted” Codd
Creator of the Relational Model

Example [Affolter@VLDBJ’19]

movie Brad Pitt

SELECT m.title
FROM Movie m JOIN Starring s ON s.movieId =m.id

JOIN Actor a ON a.actorId=s.actorId
JOIN Person p ON p.id = a.actorId

WHERE p.FirstName="Brad" AND p.LastName="Pitt"

Show me all
movies with
the actor Brad
Pitt.

What are the
movies with the
actor Brad
Pitt?

NL Interfaces for DBs – Challenges

• Requirements
• Understand the user’s intenVon or informaVon needs when

formulaVng the query.
• Correctly represent this intenVon in a structured query language

• UlVmately, it would imply in solving the general problem of Natural
Language Understanding (NLU)
• NLU is hypothe@cally one of the AI-Hard problems

• Thus, all current systems are necessarily approximated and limited,
considering the Codd’s statement

NL Interfaces for DBs – Limitations

• All existing methods use general pre-processing techniques
• Each one is based on assumptions on the NL queries they support
• Many times, these hypothesis are not explicit
• Examples of techniques/resources

• Rules

• Lexicons, ontologies, dictionaries, etc.

• Training

• User interaction

• Logs

NL Interfaces for DBs – Evaluation

• There is no full understanding of how good techniques really are
• It is unknown how applicable they would be to real world situations
• Different studies, based on different datasets
• Often have limitations and assumptions, implicitly hidden in the

context or datasets.
• Some evaluation metrics are commonly used, but they are quite

simplistic and do not adequately represent the quality of results.

NL Interfaces for DBs – Evaluation

• Benchmark queries for NLDB qualitative evaluation [Affolter@VLDBJ’19]

NL Queries Likely Operations
Q1 Who is the director of ‘Inglourious Basterds’? Join + String-based Selection
Q2 All movies with a rating higher than 9. Join + Range-based Selection
Q3 All movies starring Brad Pitt from 2000 until 2010 Join + Date-based Selection
Q4 Which movie has grossed most? Join + Agreagation/Orderin
Q5 Show me all drama and comedy movies. Join + União
Q6 List all great movies. Concept/Subjectivity
Q7 What was the best movie of each genre Join + Aggreagation
Q8 List all non-Japanese horror movies. Join + Negation-based Selecion
Q9 All movies with rating higher than the rating of ‘Sin City’. Join + Subquery
Q10 All movies with the same genres as ‘Sin City’. Join + Subquery

Demand and Opportunities

• Demands
• PopularizaLon of IR Systems - Search Engines: Users

become used to explore by themselves
• Data ScienLst, Data Journalists
• DemocraLzaLon of access to online DBs for casual

users
• Massive use of conversaLonal interfaces

• Opportuni/es:
• Technical maturity in NLP, ML & IR allow extracLng

text semanLcs with precision and efficiency

Increasing Interest – Citations per Year1

Modern Natural Language
Interfaces to Databases

[Popescu@COLING94]

Construc?ng an Interac?ve
Natural Language Interface

for Rela?onal Databases

[Li@PVLDB'14]

Progress in natural language
understanding: an

application to lunar geology

[Woods@AFIPS'1973]

NALIR – 2014
Best Paper VLDBPrecise - 2004LUNAR - 1973

1 Seman&c Scholar, September 2020

Increasing Interest – DB Community

• ICDE 2020: 4 papers
• SIGMOD 2020: 5 papers, one tutorial
• VLDB 2020: 3 papers, one tutorial
• ICDE 2021: 4 papers
• SIGMOD 2021: 3 papers
• VLDB 2021: 1 paper so far

Visions: Data versus Language

• Data-Centric Systems (DCS):
• Focus: Map references to DB elements occurring in the query

• Use rule-based techniques to map NL query words to SQL clauses

• Less dependent on the DB; More dependent on variations in NL queries

• Language-Centric Systems (LCS):
• Focus: Instance of the automatic language translation problem

• Use Deep Learning models and algorithms

• More dependent on the DB; Less dependent on variations in NL queries

Visions: Data versus Language

Data-Centric

NaLIR [Li@PVLDB'14]
SQLizer [Yaghmazadeh,OOPSLA'17]
Templar [Baik@ICDE'19]
ATHENA [Saha@PVLDB'16]

ATHENA++ [Sen@PVLDB'20]

Language-Centric

NSP [Iyer@ACL'17]
Seq2SQL [Zhong@CoRR'17
SQLNet [Xu@CoRR'17]

Coarse2Fine [Lapata@ACL'18]
STAMP [Zhou@ACL’18]

PT-MAML [Huang@NAACL-HLT’18]
TypeSQL [Yu@NAACL-HLT'18]

SyntaxSQLNet [Yu@EMNLP'18]
GNN [Guo@ACL'19]
IRNet [Bogin@ACL'19]

Photon [Zeng@CoRR'20]
DBPal [Weir@SIGMOD’20]

Visions: Data versus Language

Data-Centric

NaLIR [Li@PVLDB'14]
SQLizer [Yaghmazadeh,OOPSLA'17]
Templar [Baik@ICDE'19]
ATHENA [Saha@PVLDB'16]

ATHENA++ [Sen@PVLDB'20]

Language-Centric

NSP [Iyer@ACL'17]
Seq2SQL [Zhong@CoRR'17
SQLNet [Xu@CoRR'17]

Coarse2Fine [Lapata@ACL'18]
STAMP [Zhou@ACL’18]

PT-MAML [Huang@NAACL-HLT’18]
TypeSQL [Yu@NAACL-HLT'18]

SyntaxSQLNet [Yu@EMNLP'18]
GNN [Guo@ACL'19]
IRNet [Bogin@ACL'19]

Photon [Zeng@CoRR'20]
DBPal [Weir@SIGMOD’20]

Visions: Data versus Language

Data-Centric

NaLIR [Li@PVLDB'14]
SQLizer [Yaghmazadeh,OOPSLA'17]
Templar [Baik@ICDE'19]
ATHENA [Saha@PVLDB'16]

ATHENA++ [Sen@PVLDB'20]

Language-Centric

NSP [Iyer@ACL'17]
Seq2SQL [Zhong@CoRR'17
SQLNet [Xu@CoRR'17]

Coarse2Fine [Lapata@ACL'18]
STAMP [Zhou@ACL’18]

PT-MAML [Huang@NAACL-HLT’18]
TypeSQL [Yu@NAACL-HLT'18]

SyntaxSQLNet [Yu@EMNLP'18]
GNN [Guo@ACL'19]
IRNet [Bogin@ACL'19]

Photon [Zeng@CoRR'20]
DBPal [Weir@SIGMOD’20]

Data-Centric Systems (DCS)

NaLIR [Li@PVLDB'14]

• Natural Language Interface for Relational databases
• F. Li and H. V. Jagadish – DBGroup University of Michigan
• Best Paper VLDB, 2014
• Often used as a baseline in evaluation experiments with other DCS
• Original code and datasets: https://github.com/umich-dbgroup/NaLIR
• Python implementation by our group: http://t.ly/CM9y
• Jupyter notebook prepared by Genoveva and Javier Espinosa, thanks!

�$%���$���/�
��##�!��

�$%���$���
�&$)�&)$�����)%&"$�

�)�$,��$���
�$�!%��&"$�

��#�!��!�,�
�$%�$�

�
��

�%�$�	!&�$�����

��&���!��+�/�
%��� ���$�#��

�$%���$����
�"�����##�$�

��"����

�)�$,��$���

������

��
�

��%)�&%�

��"������!����&��
�)�$,��$��%�

��!����&��
��##�!�%�

	!&�$��'*���")!���&"$�

��"����	!&�$#$�&�'"!%�

�$%���$���

Figure 2: System Architecture.

ones of these should be considered as publications. Even
if the included items are all unambiguous, when natural
language queries have complex structures with modifier at-
tachments, aggregations, comparisons, quantifiers, and con-
junctions, it may contain several ambiguities that cannot
be fixed by the system with confidence, from the inter-
pretation of an ambiguous phrase to the relationship be-
tween words/phrases. The number of possible interpreta-
tions grows exponentially with the number of unfixed ambi-
guities. As a result, there may be hundreds of candidate in-
terpretations for a complex natural language query, of which
only one is correct. Since these interpretations are often sim-
ilar to each other in semantics, it is very hard to develop an
effective ranking function for them. As a result, if the sys-
tem simply returns a list of hundreds of answers, the users
will be frustrated in verifying them.

Given the above two observations, instead of explaining
the query results, we explain the query interpretation pro-
cess, especially how each ambiguity is fixed, to the user. In
our system, we fix each “easy” ambiguity quietly. For each
“hard” ambiguity, we provide multiple interpretations for
the user to choose from. In such a way, even for a rather
complex natural language query, verifications for 3-4 ambi-
guities is enough, in which each verification is just making
choices from several options.

The ambiguities in processing a natural language query
are not often independent of each other. The resolution of
some ambiguities depends on the resolution of some other
ambiguities. For example, the interpretation of the whole
sentence depends on how each of its words/phrases is inter-
preted. So the disambiguation process and the verification
process should be organized in a few steps. In our system,
we organize them in three steps, as we will discuss in detail
in the next section. In each step, for a “hard” ambiguity,
we generate multiple interpretations for it and, at the same
time, use the best interpretation as the default choice to
process later steps. Each time a user changes a choice, our
system immediately reprocesses all the ambiguities in later
steps and updates the query results.

3. SYSTEM OVERVIEW
Figure 2 depicts the architecture of NaLIR1. The entire

system we have implemented consists of three main parts:

1In the current implementation, we use MySQL as the
RDBMS, and Stanford NLP Parser [7] as the dependency
natural language parser.

the query interpretation part, interactive communicator and
query tree translator. The query interpretation part, which
includes parse tree node mapper (Section 4) and structure
adjustor (Section 5), is responsible for interpreting the nat-
ural language query and representing the interpretation as
a query tree. The interactive communicator is responsible
for communicating with the user to ensure that the interpre-
tation process is correct. The query tree, possibly verified
by the user, will be translated into a SQL statement in the
query tree translator (Section 6) and then evaluated against
an RDBMS.

Dependency Parser. The first obstacle in translating
a natural language query into a SQL query is to under-
stand the natural language query linguistically. In our sys-
tem, we use the Stanford Parser [7] to generate a linguistic
parse tree from the natural language query. The linguis-
tic parse trees in our system are dependency parse trees,
in which each node is a word/phrase specified by the user
while each edge is a linguistic dependency relationship be-
tween two words/phrases. The simplified linguistic parse
tree of Query 2 in Figure 1 is shown in Figure 3 (a).

Parse Tree Node Mapper. The parse tree node map-
per identifies the nodes in the linguistic parse tree that can
be mapped to SQL components and tokenizes them into dif-
ferent tokens. In the mapping process, some nodes may fail
in mapping to any SQL component. In this case, our system
generates a warning to the user, telling her that these nodes
do not directly contribute in interpreting her query. Also,
some nodes may have multiple mappings, which causes am-
biguities in interpreting these nodes. For each such node,
the parse tree node mapper outputs the best mapping to
the parse tree structure adjustor by default and reports all
candidate mappings to the interactive communicator.

Parse Tree Structure Adjustor. After the node map-
ping (possibly with interactive communications with the
user), we assume that each node is understood by our sys-
tem. The next step is to correctly understand the tree struc-
ture from the database’s perspective. However, this is not
easy since the linguistic parse tree might be incorrect, out
of the semantic coverage of our system or ambiguous from
the database’s perspective. In those cases, we adjust the
structure of the linguistic parse tree and generate candidate
interpretations (query trees) for it. In particular, we adjust
the structure of the parse tree in two steps. In the first step,
we reformulate the nodes in the parse tree to make it fall in
the syntactic coverage of our system (valid parse tree). If

75

there are multiple candidate valid parse trees for the query,
we choose the best one as default input for the second step
and report top k of them to the interactive communicator.
In the second step, the chosen (or default) valid parse tree
is analyzed semantically and implicit nodes are inserted to
make it more semantically reasonable. This process is also
under the supervision of the user. After inserting implicit
nodes, we obtain the exact interpretation, represented as a
query tree, for the query.
Interactive Communicator. In case the system possi-

bly misunderstands the user, the interactive communicator
explains how her query is processed. In our system, inter-
active communications are organized in three steps, which
verify the intermediate results in the parse tree node map-
ping, parse tree structure reformulation, and implicit node
insertion, respectively. For each ambiguous part, we gener-
ate a multiple choice selection panel, in which each choice
corresponds to a different interpretation. Each time a user
changes a choice, our system immediately reprocesses all the
ambiguities in later steps.

Example 1. Consider the linguistic parse tree T in Fig-
ure 3(a). In the first step, the parse tree node mapper gener-
ates the best mapping for each node (represented as M and
shown in Figure 3 (b)) and reports to the user that the node
“VLDB” maps to “VLDB conference” and “VLDB Jour-
nal” in the database and that our system has chosen “VLDB
conference” as the default mapping. According to M , in the
second step, the parse tree adjustor reformulates the struc-
ture of T and generates the top k valid parse trees {TM

i }, in
which TM

1 (Figure 3 (c)) is the best. The interactive com-
municator explains each of the k valid parse trees in natural
language for the user to choose from. For example, TM

1 is
explained as “return the authors, where the papers of the au-
thor in VLDB after 2000 is more than Bob”. In the third
step, TM

1 is fully instantiated in the parse tree structure ad-
justor by inserting implicit nodes (shown in Figure 3 (d)).
The result query tree TM

11 is explained to the user as “return
the authors, where the number of papers of the author in
VLDB after 2000 is more than the number of paper of Bob
in VLDB after 2000.”, in which the underline part can be
canceled by the user. When the user changes the mapping
strategy M to M ′, our system will immediately use M ′ to
reprocess the second and third steps. Similarly, if the user
choose TM

i instead of TM
1 as the best valid parse tree, our

system will fully instantiate TM
i in the third step and update

the interactions.

Query Tree Translator. Given the query tree verified
by the user, the translator utilizes its structure to generate
appropriate structure in the SQL expression and completes
the foreign-key-primary-key (FK-PK) join paths. The result
SQL statement may contain aggregate functions, multi-level
subqueries, and various types of joins, among other things.
Finally, our system evaluates the translated SQL statement
against an RDBMS and returns the query results back to
the user.

4. PARSE TREE NODE INTERPRETATION
To understand the linguistic parse tree from the database’s

perspective, we first need to identify the parse tree nodes
(words/phrases) that can be mapped to SQL components.
Such nodes can be further divided into different types as
shown in Figure 4, according to the type of SQL components

author�

return�

VLDB�after�LDB ftD

 2000�

paper�

Bob�VLLLDLDb

more�

number of�number of�

ROOT�

(d)�

author�h

return�

Bob�

more�

ROOT�

(c)�

VLDB� after�LDB ft

2000�

paper�

00
VLDB�after�DB ftD

2000�

paper�

author�VLDLLDLDth

00

return (SN: SELECT)
author (NN: author)
more (ON: >)
paper (NN: publication)
Bob (VN: author.name)
VLDB (VN: conference.name) �
after (ON: >)
2000 (VN: publication.year) �

(b)�

return�

after�

2000�

author�

VLDB ��LD

ft

ROOT�

more�
(a)�

paper� Bob�

T� M�

TM1� TM11�

Figure 3: (a) A Simplified Linguistic Parse Tree
from the Stanford Parser. (b) A Mapping Strat-
egy for the Nodes in the Parse Tree. (c) A Valid
Parse Tree. (d) A Query Tree after Inserting Im-
plicit Nodes.

���	����	� ����	�����
����������	��

�����#�
����0�
1� ��	���*)�!�.���	����

� �!�#�!�
����0�
1� ���� �!�#�!-��/�/�2-�32-�,2-����#���"�

�'��$���
����0�
1� ������!���$����'��$��-��/�/-�����

����
����0

1� ��!���$���������!��&!��'#�������

���'��
����0�
1� ��(��'��'���!�����&!��'#��

�'��$��!�
����0�
1� �		-��
�-������

	�����
����0	
1� �
�-��-�
���

Figure 4: Different Types of Nodes.

they mapped to. The identification of select node, operator
node, function node, quantifier node and logic node is inde-
pendent of the database being queried. In NaLIR, enumer-
ated sets of phrases are served as the real world “knowledge
base” to identify these five types of nodes.
In contrast, name nodes and value nodes correspond to

the meta-data and data, respectively, which entirely depend
on the database being queried. Often, the words/phrases
specified by the user are not exactly the same as the meta-
data/data in the database. In Section 4.2, we map these
parse tree nodes to the meta-data/data in the database
based on the similarity evaluation between them. Ambi-
guity exists when a parse tree node has multiple candidate
mappings. In such a case, our system returns multiple can-
didate mappings for the user to choose from. In Section 4.3,
we provide strategies to facilitate the user in recognizing the
desired mappings from possibly many candidate mappings.
Before that, in Section 4.1, we define the model we assume
for the rest of the paper.

4.1 Data Model
In this paper, a relation schema is defined as Ri(A

i
1, A

i
2,...,

Ai
ki), which consists of a relation name n(Ri) and a set of

attribute schemas {Ai
j |1 ≤ j ≤ ki}. A relation schema Ri

has one (or a set of) attribute schema as its primary key

76

there are multiple candidate valid parse trees for the query,
we choose the best one as default input for the second step
and report top k of them to the interactive communicator.
In the second step, the chosen (or default) valid parse tree
is analyzed semantically and implicit nodes are inserted to
make it more semantically reasonable. This process is also
under the supervision of the user. After inserting implicit
nodes, we obtain the exact interpretation, represented as a
query tree, for the query.

Interactive Communicator. In case the system possi-
bly misunderstands the user, the interactive communicator
explains how her query is processed. In our system, inter-
active communications are organized in three steps, which
verify the intermediate results in the parse tree node map-
ping, parse tree structure reformulation, and implicit node
insertion, respectively. For each ambiguous part, we gener-
ate a multiple choice selection panel, in which each choice
corresponds to a different interpretation. Each time a user
changes a choice, our system immediately reprocesses all the
ambiguities in later steps.

Example 1. Consider the linguistic parse tree T in Fig-
ure 3(a). In the first step, the parse tree node mapper gener-
ates the best mapping for each node (represented as M and
shown in Figure 3 (b)) and reports to the user that the node
“VLDB” maps to “VLDB conference” and “VLDB Jour-
nal” in the database and that our system has chosen “VLDB
conference” as the default mapping. According to M , in the
second step, the parse tree adjustor reformulates the struc-
ture of T and generates the top k valid parse trees {TM

i }, in
which TM

1 (Figure 3 (c)) is the best. The interactive com-
municator explains each of the k valid parse trees in natural
language for the user to choose from. For example, TM

1 is
explained as “return the authors, where the papers of the au-
thor in VLDB after 2000 is more than Bob”. In the third
step, TM

1 is fully instantiated in the parse tree structure ad-
justor by inserting implicit nodes (shown in Figure 3 (d)).
The result query tree TM

11 is explained to the user as “return
the authors, where the number of papers of the author in
VLDB after 2000 is more than the number of paper of Bob
in VLDB after 2000.”, in which the underline part can be
canceled by the user. When the user changes the mapping
strategy M to M ′, our system will immediately use M ′ to
reprocess the second and third steps. Similarly, if the user
choose TM

i instead of TM
1 as the best valid parse tree, our

system will fully instantiate TM
i in the third step and update

the interactions.

Query Tree Translator. Given the query tree verified
by the user, the translator utilizes its structure to generate
appropriate structure in the SQL expression and completes
the foreign-key-primary-key (FK-PK) join paths. The result
SQL statement may contain aggregate functions, multi-level
subqueries, and various types of joins, among other things.
Finally, our system evaluates the translated SQL statement
against an RDBMS and returns the query results back to
the user.

4. PARSE TREE NODE INTERPRETATION
To understand the linguistic parse tree from the database’s

perspective, we first need to identify the parse tree nodes
(words/phrases) that can be mapped to SQL components.
Such nodes can be further divided into different types as
shown in Figure 4, according to the type of SQL components

author�

return�

VLDB�after�LDB ftD

 2000�

paper�

Bob�VLLLDLDb

more�

number of�number of�

ROOT�

(d)�

author�h

return�

Bob�

more�

ROOT�

(c)�

VLDB� after�LDB ft

2000�

paper�

00
VLDB�after�DB ftD

2000�

paper�

author�VLDLLDLDth

00

return (SN: SELECT)
author (NN: author)
more (ON: >)
paper (NN: publication)
Bob (VN: author.name)
VLDB (VN: conference.name) �
after (ON: >)
2000 (VN: publication.year) �

(b)�

return�

after�

2000�

author�

VLDB ��LD

ft

ROOT�

more�
(a)�

paper� Bob�

T� M�

TM1� TM11�

Figure 3: (a) A Simplified Linguistic Parse Tree
from the Stanford Parser. (b) A Mapping Strat-
egy for the Nodes in the Parse Tree. (c) A Valid
Parse Tree. (d) A Query Tree after Inserting Im-
plicit Nodes.

���	����	� ����	�����
����������	��

�����#�
����0�
1� ��	���*)�!�.���	����

� �!�#�!�
����0�
1� ���� �!�#�!-��/�/�2-�32-�,2-����#���"�

�'��$���
����0�
1� ������!���$����'��$��-��/�/-�����

����
����0

1� ��!���$���������!��&!��'#�������

���'��
����0�
1� ��(��'��'���!�����&!��'#��

�'��$��!�
����0�
1� �		-��
�-������

	�����
����0	
1� �
�-��-�
���

Figure 4: Different Types of Nodes.

they mapped to. The identification of select node, operator
node, function node, quantifier node and logic node is inde-
pendent of the database being queried. In NaLIR, enumer-
ated sets of phrases are served as the real world “knowledge
base” to identify these five types of nodes.
In contrast, name nodes and value nodes correspond to

the meta-data and data, respectively, which entirely depend
on the database being queried. Often, the words/phrases
specified by the user are not exactly the same as the meta-
data/data in the database. In Section 4.2, we map these
parse tree nodes to the meta-data/data in the database
based on the similarity evaluation between them. Ambi-
guity exists when a parse tree node has multiple candidate
mappings. In such a case, our system returns multiple can-
didate mappings for the user to choose from. In Section 4.3,
we provide strategies to facilitate the user in recognizing the
desired mappings from possibly many candidate mappings.
Before that, in Section 4.1, we define the model we assume
for the rest of the paper.

4.1 Data Model
In this paper, a relation schema is defined as Ri(A

i
1, A

i
2,...,

Ai
ki), which consists of a relation name n(Ri) and a set of

attribute schemas {Ai
j |1 ≤ j ≤ ki}. A relation schema Ri

has one (or a set of) attribute schema as its primary key

76

there are multiple candidate valid parse trees for the query,
we choose the best one as default input for the second step
and report top k of them to the interactive communicator.
In the second step, the chosen (or default) valid parse tree
is analyzed semantically and implicit nodes are inserted to
make it more semantically reasonable. This process is also
under the supervision of the user. After inserting implicit
nodes, we obtain the exact interpretation, represented as a
query tree, for the query.

Interactive Communicator. In case the system possi-
bly misunderstands the user, the interactive communicator
explains how her query is processed. In our system, inter-
active communications are organized in three steps, which
verify the intermediate results in the parse tree node map-
ping, parse tree structure reformulation, and implicit node
insertion, respectively. For each ambiguous part, we gener-
ate a multiple choice selection panel, in which each choice
corresponds to a different interpretation. Each time a user
changes a choice, our system immediately reprocesses all the
ambiguities in later steps.

Example 1. Consider the linguistic parse tree T in Fig-
ure 3(a). In the first step, the parse tree node mapper gener-
ates the best mapping for each node (represented as M and
shown in Figure 3 (b)) and reports to the user that the node
“VLDB” maps to “VLDB conference” and “VLDB Jour-
nal” in the database and that our system has chosen “VLDB
conference” as the default mapping. According to M , in the
second step, the parse tree adjustor reformulates the struc-
ture of T and generates the top k valid parse trees {TM

i }, in
which TM

1 (Figure 3 (c)) is the best. The interactive com-
municator explains each of the k valid parse trees in natural
language for the user to choose from. For example, TM

1 is
explained as “return the authors, where the papers of the au-
thor in VLDB after 2000 is more than Bob”. In the third
step, TM

1 is fully instantiated in the parse tree structure ad-
justor by inserting implicit nodes (shown in Figure 3 (d)).
The result query tree TM

11 is explained to the user as “return
the authors, where the number of papers of the author in
VLDB after 2000 is more than the number of paper of Bob
in VLDB after 2000.”, in which the underline part can be
canceled by the user. When the user changes the mapping
strategy M to M ′, our system will immediately use M ′ to
reprocess the second and third steps. Similarly, if the user
choose TM

i instead of TM
1 as the best valid parse tree, our

system will fully instantiate TM
i in the third step and update

the interactions.

Query Tree Translator. Given the query tree verified
by the user, the translator utilizes its structure to generate
appropriate structure in the SQL expression and completes
the foreign-key-primary-key (FK-PK) join paths. The result
SQL statement may contain aggregate functions, multi-level
subqueries, and various types of joins, among other things.
Finally, our system evaluates the translated SQL statement
against an RDBMS and returns the query results back to
the user.

4. PARSE TREE NODE INTERPRETATION
To understand the linguistic parse tree from the database’s

perspective, we first need to identify the parse tree nodes
(words/phrases) that can be mapped to SQL components.
Such nodes can be further divided into different types as
shown in Figure 4, according to the type of SQL components

author�

return�

VLDB�after�LDB ftD

 2000�

paper�

Bob�VLLLDLDb

more�

number of�number of�

ROOT�

(d)�

author�h

return�

Bob�

more�

ROOT�

(c)�

VLDB� after�LDB ft

2000�

paper�

00
VLDB�after�DB ftD

2000�

paper�

author�VLDLLDLDth

00

return (SN: SELECT)
author (NN: author)
more (ON: >)
paper (NN: publication)
Bob (VN: author.name)
VLDB (VN: conference.name) �
after (ON: >)
2000 (VN: publication.year) �

(b)�

return�

after�

2000�

author�

VLDB ��LD

ft

ROOT�

more�
(a)�

paper� Bob�

T� M�

TM1� TM11�

Figure 3: (a) A Simplified Linguistic Parse Tree
from the Stanford Parser. (b) A Mapping Strat-
egy for the Nodes in the Parse Tree. (c) A Valid
Parse Tree. (d) A Query Tree after Inserting Im-
plicit Nodes.

���	����	� ����	�����
����������	��

�����#�
����0�
1� ��	���*)�!�.���	����

� �!�#�!�
����0�
1� ���� �!�#�!-��/�/�2-�32-�,2-����#���"�

�'��$���
����0�
1� ������!���$����'��$��-��/�/-�����

����
����0

1� ��!���$���������!��&!��'#�������

���'��
����0�
1� ��(��'��'���!�����&!��'#��

�'��$��!�
����0�
1� �		-��
�-������

	�����
����0	
1� �
�-��-�
���

Figure 4: Different Types of Nodes.

they mapped to. The identification of select node, operator
node, function node, quantifier node and logic node is inde-
pendent of the database being queried. In NaLIR, enumer-
ated sets of phrases are served as the real world “knowledge
base” to identify these five types of nodes.
In contrast, name nodes and value nodes correspond to

the meta-data and data, respectively, which entirely depend
on the database being queried. Often, the words/phrases
specified by the user are not exactly the same as the meta-
data/data in the database. In Section 4.2, we map these
parse tree nodes to the meta-data/data in the database
based on the similarity evaluation between them. Ambi-
guity exists when a parse tree node has multiple candidate
mappings. In such a case, our system returns multiple can-
didate mappings for the user to choose from. In Section 4.3,
we provide strategies to facilitate the user in recognizing the
desired mappings from possibly many candidate mappings.
Before that, in Section 4.1, we define the model we assume
for the rest of the paper.

4.1 Data Model
In this paper, a relation schema is defined as Ri(A

i
1, A

i
2,...,

Ai
ki), which consists of a relation name n(Ri) and a set of

attribute schemas {Ai
j |1 ≤ j ≤ ki}. A relation schema Ri

has one (or a set of) attribute schema as its primary key

76

there are multiple candidate valid parse trees for the query,
we choose the best one as default input for the second step
and report top k of them to the interactive communicator.
In the second step, the chosen (or default) valid parse tree
is analyzed semantically and implicit nodes are inserted to
make it more semantically reasonable. This process is also
under the supervision of the user. After inserting implicit
nodes, we obtain the exact interpretation, represented as a
query tree, for the query.

Interactive Communicator. In case the system possi-
bly misunderstands the user, the interactive communicator
explains how her query is processed. In our system, inter-
active communications are organized in three steps, which
verify the intermediate results in the parse tree node map-
ping, parse tree structure reformulation, and implicit node
insertion, respectively. For each ambiguous part, we gener-
ate a multiple choice selection panel, in which each choice
corresponds to a different interpretation. Each time a user
changes a choice, our system immediately reprocesses all the
ambiguities in later steps.

Example 1. Consider the linguistic parse tree T in Fig-
ure 3(a). In the first step, the parse tree node mapper gener-
ates the best mapping for each node (represented as M and
shown in Figure 3 (b)) and reports to the user that the node
“VLDB” maps to “VLDB conference” and “VLDB Jour-
nal” in the database and that our system has chosen “VLDB
conference” as the default mapping. According to M , in the
second step, the parse tree adjustor reformulates the struc-
ture of T and generates the top k valid parse trees {TM

i }, in
which TM

1 (Figure 3 (c)) is the best. The interactive com-
municator explains each of the k valid parse trees in natural
language for the user to choose from. For example, TM

1 is
explained as “return the authors, where the papers of the au-
thor in VLDB after 2000 is more than Bob”. In the third
step, TM

1 is fully instantiated in the parse tree structure ad-
justor by inserting implicit nodes (shown in Figure 3 (d)).
The result query tree TM

11 is explained to the user as “return
the authors, where the number of papers of the author in
VLDB after 2000 is more than the number of paper of Bob
in VLDB after 2000.”, in which the underline part can be
canceled by the user. When the user changes the mapping
strategy M to M ′, our system will immediately use M ′ to
reprocess the second and third steps. Similarly, if the user
choose TM

i instead of TM
1 as the best valid parse tree, our

system will fully instantiate TM
i in the third step and update

the interactions.

Query Tree Translator. Given the query tree verified
by the user, the translator utilizes its structure to generate
appropriate structure in the SQL expression and completes
the foreign-key-primary-key (FK-PK) join paths. The result
SQL statement may contain aggregate functions, multi-level
subqueries, and various types of joins, among other things.
Finally, our system evaluates the translated SQL statement
against an RDBMS and returns the query results back to
the user.

4. PARSE TREE NODE INTERPRETATION
To understand the linguistic parse tree from the database’s

perspective, we first need to identify the parse tree nodes
(words/phrases) that can be mapped to SQL components.
Such nodes can be further divided into different types as
shown in Figure 4, according to the type of SQL components

author�

return�

VLDB�after�LDB ftD

 2000�

paper�

Bob�VLLLDLDb

more�

number of�number of�

ROOT�

(d)�

author�h

return�

Bob�

more�

ROOT�

(c)�

VLDB� after�LDB ft

2000�

paper�

00
VLDB�after�DB ftD

2000�

paper�

author�VLDLLDLDth

00

return (SN: SELECT)
author (NN: author)
more (ON: >)
paper (NN: publication)
Bob (VN: author.name)
VLDB (VN: conference.name) �
after (ON: >)
2000 (VN: publication.year) �

(b)�

return�

after�

2000�

author�

VLDB ��LD

ft

ROOT�

more�
(a)�

paper� Bob�

T� M�

TM1� TM11�

Figure 3: (a) A Simplified Linguistic Parse Tree
from the Stanford Parser. (b) A Mapping Strat-
egy for the Nodes in the Parse Tree. (c) A Valid
Parse Tree. (d) A Query Tree after Inserting Im-
plicit Nodes.

���	����	� ����	�����
����������	��

�����#�
����0�
1� ��	���*)�!�.���	����

� �!�#�!�
����0�
1� ���� �!�#�!-��/�/�2-�32-�,2-����#���"�

�'��$���
����0�
1� ������!���$����'��$��-��/�/-�����

����
����0

1� ��!���$���������!��&!��'#�������

���'��
����0�
1� ��(��'��'���!�����&!��'#��

�'��$��!�
����0�
1� �		-��
�-������

	�����
����0	
1� �
�-��-�
���

Figure 4: Different Types of Nodes.

they mapped to. The identification of select node, operator
node, function node, quantifier node and logic node is inde-
pendent of the database being queried. In NaLIR, enumer-
ated sets of phrases are served as the real world “knowledge
base” to identify these five types of nodes.

In contrast, name nodes and value nodes correspond to
the meta-data and data, respectively, which entirely depend
on the database being queried. Often, the words/phrases
specified by the user are not exactly the same as the meta-
data/data in the database. In Section 4.2, we map these
parse tree nodes to the meta-data/data in the database
based on the similarity evaluation between them. Ambi-
guity exists when a parse tree node has multiple candidate
mappings. In such a case, our system returns multiple can-
didate mappings for the user to choose from. In Section 4.3,
we provide strategies to facilitate the user in recognizing the
desired mappings from possibly many candidate mappings.
Before that, in Section 4.1, we define the model we assume
for the rest of the paper.

4.1 Data Model
In this paper, a relation schema is defined as Ri(A

i
1, A

i
2,...,

Ai
ki), which consists of a relation name n(Ri) and a set of

attribute schemas {Ai
j |1 ≤ j ≤ ki}. A relation schema Ri

has one (or a set of) attribute schema as its primary key

76

NaLIR [Li@PVLDB'14]

return authors
who have more

papers than
Bob in VLDB

after 2000

NaLIR [Li@PVLDB’14] – Parsing

• Dependency parsing: task of finding syntactic dependencies in a sentence.
• Syntactic dependencies: asymmetric binary relationship between words
• Includes grammatical roles (subject, object, determinant, modifier)

• Results in a syntactic dependency tree
• Uses the well-know Stanford Parser [Marneffe@LREC'06]

return the authors in
VLDB after 2000

�$%���$���/�
��##�!��

�$%���$���
�&$)�&)$�����)%&"$�

�)�$,��$���
�$�!%��&"$�

��#�!��!�,�
�$%�$�

�
��

�%�$�	!&�$�����

��&���!��+�/�
%��� ���$�#��

�$%���$����
�"�����##�$�

��"����

�)�$,��$���

������

��
�

��%)�&%�

��"������!����&��
�)�$,��$��%�

��!����&��
��##�!�%�

	!&�$��'*���")!���&"$�

��"����	!&�$#$�&�'"!%�

�$%���$���

Figure 2: System Architecture.

ones of these should be considered as publications. Even
if the included items are all unambiguous, when natural
language queries have complex structures with modifier at-
tachments, aggregations, comparisons, quantifiers, and con-
junctions, it may contain several ambiguities that cannot
be fixed by the system with confidence, from the inter-
pretation of an ambiguous phrase to the relationship be-
tween words/phrases. The number of possible interpreta-
tions grows exponentially with the number of unfixed ambi-
guities. As a result, there may be hundreds of candidate in-
terpretations for a complex natural language query, of which
only one is correct. Since these interpretations are often sim-
ilar to each other in semantics, it is very hard to develop an
effective ranking function for them. As a result, if the sys-
tem simply returns a list of hundreds of answers, the users
will be frustrated in verifying them.

Given the above two observations, instead of explaining
the query results, we explain the query interpretation pro-
cess, especially how each ambiguity is fixed, to the user. In
our system, we fix each “easy” ambiguity quietly. For each
“hard” ambiguity, we provide multiple interpretations for
the user to choose from. In such a way, even for a rather
complex natural language query, verifications for 3-4 ambi-
guities is enough, in which each verification is just making
choices from several options.

The ambiguities in processing a natural language query
are not often independent of each other. The resolution of
some ambiguities depends on the resolution of some other
ambiguities. For example, the interpretation of the whole
sentence depends on how each of its words/phrases is inter-
preted. So the disambiguation process and the verification
process should be organized in a few steps. In our system,
we organize them in three steps, as we will discuss in detail
in the next section. In each step, for a “hard” ambiguity,
we generate multiple interpretations for it and, at the same
time, use the best interpretation as the default choice to
process later steps. Each time a user changes a choice, our
system immediately reprocesses all the ambiguities in later
steps and updates the query results.

3. SYSTEM OVERVIEW
Figure 2 depicts the architecture of NaLIR1. The entire

system we have implemented consists of three main parts:

1In the current implementation, we use MySQL as the
RDBMS, and Stanford NLP Parser [7] as the dependency
natural language parser.

the query interpretation part, interactive communicator and
query tree translator. The query interpretation part, which
includes parse tree node mapper (Section 4) and structure
adjustor (Section 5), is responsible for interpreting the nat-
ural language query and representing the interpretation as
a query tree. The interactive communicator is responsible
for communicating with the user to ensure that the interpre-
tation process is correct. The query tree, possibly verified
by the user, will be translated into a SQL statement in the
query tree translator (Section 6) and then evaluated against
an RDBMS.

Dependency Parser. The first obstacle in translating
a natural language query into a SQL query is to under-
stand the natural language query linguistically. In our sys-
tem, we use the Stanford Parser [7] to generate a linguistic
parse tree from the natural language query. The linguis-
tic parse trees in our system are dependency parse trees,
in which each node is a word/phrase specified by the user
while each edge is a linguistic dependency relationship be-
tween two words/phrases. The simplified linguistic parse
tree of Query 2 in Figure 1 is shown in Figure 3 (a).

Parse Tree Node Mapper. The parse tree node map-
per identifies the nodes in the linguistic parse tree that can
be mapped to SQL components and tokenizes them into dif-
ferent tokens. In the mapping process, some nodes may fail
in mapping to any SQL component. In this case, our system
generates a warning to the user, telling her that these nodes
do not directly contribute in interpreting her query. Also,
some nodes may have multiple mappings, which causes am-
biguities in interpreting these nodes. For each such node,
the parse tree node mapper outputs the best mapping to
the parse tree structure adjustor by default and reports all
candidate mappings to the interactive communicator.

Parse Tree Structure Adjustor. After the node map-
ping (possibly with interactive communications with the
user), we assume that each node is understood by our sys-
tem. The next step is to correctly understand the tree struc-
ture from the database’s perspective. However, this is not
easy since the linguistic parse tree might be incorrect, out
of the semantic coverage of our system or ambiguous from
the database’s perspective. In those cases, we adjust the
structure of the linguistic parse tree and generate candidate
interpretations (query trees) for it. In particular, we adjust
the structure of the parse tree in two steps. In the first step,
we reformulate the nodes in the parse tree to make it fall in
the syntactic coverage of our system (valid parse tree). If

75

there are multiple candidate valid parse trees for the query,
we choose the best one as default input for the second step
and report top k of them to the interactive communicator.
In the second step, the chosen (or default) valid parse tree
is analyzed semantically and implicit nodes are inserted to
make it more semantically reasonable. This process is also
under the supervision of the user. After inserting implicit
nodes, we obtain the exact interpretation, represented as a
query tree, for the query.
Interactive Communicator. In case the system possi-

bly misunderstands the user, the interactive communicator
explains how her query is processed. In our system, inter-
active communications are organized in three steps, which
verify the intermediate results in the parse tree node map-
ping, parse tree structure reformulation, and implicit node
insertion, respectively. For each ambiguous part, we gener-
ate a multiple choice selection panel, in which each choice
corresponds to a different interpretation. Each time a user
changes a choice, our system immediately reprocesses all the
ambiguities in later steps.

Example 1. Consider the linguistic parse tree T in Fig-
ure 3(a). In the first step, the parse tree node mapper gener-
ates the best mapping for each node (represented as M and
shown in Figure 3 (b)) and reports to the user that the node
“VLDB” maps to “VLDB conference” and “VLDB Jour-
nal” in the database and that our system has chosen “VLDB
conference” as the default mapping. According to M , in the
second step, the parse tree adjustor reformulates the struc-
ture of T and generates the top k valid parse trees {TM

i }, in
which TM

1 (Figure 3 (c)) is the best. The interactive com-
municator explains each of the k valid parse trees in natural
language for the user to choose from. For example, TM

1 is
explained as “return the authors, where the papers of the au-
thor in VLDB after 2000 is more than Bob”. In the third
step, TM

1 is fully instantiated in the parse tree structure ad-
justor by inserting implicit nodes (shown in Figure 3 (d)).
The result query tree TM

11 is explained to the user as “return
the authors, where the number of papers of the author in
VLDB after 2000 is more than the number of paper of Bob
in VLDB after 2000.”, in which the underline part can be
canceled by the user. When the user changes the mapping
strategy M to M ′, our system will immediately use M ′ to
reprocess the second and third steps. Similarly, if the user
choose TM

i instead of TM
1 as the best valid parse tree, our

system will fully instantiate TM
i in the third step and update

the interactions.

Query Tree Translator. Given the query tree verified
by the user, the translator utilizes its structure to generate
appropriate structure in the SQL expression and completes
the foreign-key-primary-key (FK-PK) join paths. The result
SQL statement may contain aggregate functions, multi-level
subqueries, and various types of joins, among other things.
Finally, our system evaluates the translated SQL statement
against an RDBMS and returns the query results back to
the user.

4. PARSE TREE NODE INTERPRETATION
To understand the linguistic parse tree from the database’s

perspective, we first need to identify the parse tree nodes
(words/phrases) that can be mapped to SQL components.
Such nodes can be further divided into different types as
shown in Figure 4, according to the type of SQL components

author�

return�

VLDB�after�LDB ftD

 2000�

paper�

Bob�VLLLDLDb

more�

number of�number of�

ROOT�

(d)�

author�h

return�

Bob�

more�

ROOT�

(c)�

VLDB� after�LDB ft

2000�

paper�

00
VLDB�after�DB ftD

2000�

paper�

author�VLDLLDLDth

00

return (SN: SELECT)
author (NN: author)
more (ON: >)
paper (NN: publication)
Bob (VN: author.name)
VLDB (VN: conference.name) �
after (ON: >)
2000 (VN: publication.year) �

(b)�

return�

after�

2000�

author�

VLDB ��LD

ft

ROOT�

more�
(a)�

paper� Bob�

T� M�

TM1� TM11�

Figure 3: (a) A Simplified Linguistic Parse Tree
from the Stanford Parser. (b) A Mapping Strat-
egy for the Nodes in the Parse Tree. (c) A Valid
Parse Tree. (d) A Query Tree after Inserting Im-
plicit Nodes.

���	����	� ����	�����
����������	��

�����#�
����0�
1� ��	���*)�!�.���	����

� �!�#�!�
����0�
1� ���� �!�#�!-��/�/�2-�32-�,2-����#���"�

�'��$���
����0�
1� ������!���$����'��$��-��/�/-�����

����
����0

1� ��!���$���������!��&!��'#�������

���'��
����0�
1� ��(��'��'���!�����&!��'#��

�'��$��!�
����0�
1� �		-��
�-������

	�����
����0	
1� �
�-��-�
���

Figure 4: Different Types of Nodes.

they mapped to. The identification of select node, operator
node, function node, quantifier node and logic node is inde-
pendent of the database being queried. In NaLIR, enumer-
ated sets of phrases are served as the real world “knowledge
base” to identify these five types of nodes.
In contrast, name nodes and value nodes correspond to

the meta-data and data, respectively, which entirely depend
on the database being queried. Often, the words/phrases
specified by the user are not exactly the same as the meta-
data/data in the database. In Section 4.2, we map these
parse tree nodes to the meta-data/data in the database
based on the similarity evaluation between them. Ambi-
guity exists when a parse tree node has multiple candidate
mappings. In such a case, our system returns multiple can-
didate mappings for the user to choose from. In Section 4.3,
we provide strategies to facilitate the user in recognizing the
desired mappings from possibly many candidate mappings.
Before that, in Section 4.1, we define the model we assume
for the rest of the paper.

4.1 Data Model
In this paper, a relation schema is defined as Ri(A

i
1, A

i
2,...,

Ai
ki), which consists of a relation name n(Ri) and a set of

attribute schemas {Ai
j |1 ≤ j ≤ ki}. A relation schema Ri

has one (or a set of) attribute schema as its primary key

76

NaLIR [Li@PVLDB’14] – Parsing

return authors
who have more

papers than
Bob in VLDB

after 2000

NaLIR [Li@PVLDB’14] – Node Mapper

• IdenVfies nodes that can be mapped to SQL
components
• Uses a table manually constructed that maps NL

phrases to SQL clauses
• Problems:
• Some nodes are not mapped

• Some nodes have mul@ple mappings

there are multiple candidate valid parse trees for the query,
we choose the best one as default input for the second step
and report top k of them to the interactive communicator.
In the second step, the chosen (or default) valid parse tree
is analyzed semantically and implicit nodes are inserted to
make it more semantically reasonable. This process is also
under the supervision of the user. After inserting implicit
nodes, we obtain the exact interpretation, represented as a
query tree, for the query.
Interactive Communicator. In case the system possi-

bly misunderstands the user, the interactive communicator
explains how her query is processed. In our system, inter-
active communications are organized in three steps, which
verify the intermediate results in the parse tree node map-
ping, parse tree structure reformulation, and implicit node
insertion, respectively. For each ambiguous part, we gener-
ate a multiple choice selection panel, in which each choice
corresponds to a different interpretation. Each time a user
changes a choice, our system immediately reprocesses all the
ambiguities in later steps.

Example 1. Consider the linguistic parse tree T in Fig-
ure 3(a). In the first step, the parse tree node mapper gener-
ates the best mapping for each node (represented as M and
shown in Figure 3 (b)) and reports to the user that the node
“VLDB” maps to “VLDB conference” and “VLDB Jour-
nal” in the database and that our system has chosen “VLDB
conference” as the default mapping. According to M , in the
second step, the parse tree adjustor reformulates the struc-
ture of T and generates the top k valid parse trees {TM

i }, in
which TM

1 (Figure 3 (c)) is the best. The interactive com-
municator explains each of the k valid parse trees in natural
language for the user to choose from. For example, TM

1 is
explained as “return the authors, where the papers of the au-
thor in VLDB after 2000 is more than Bob”. In the third
step, TM

1 is fully instantiated in the parse tree structure ad-
justor by inserting implicit nodes (shown in Figure 3 (d)).
The result query tree TM

11 is explained to the user as “return
the authors, where the number of papers of the author in
VLDB after 2000 is more than the number of paper of Bob
in VLDB after 2000.”, in which the underline part can be
canceled by the user. When the user changes the mapping
strategy M to M ′, our system will immediately use M ′ to
reprocess the second and third steps. Similarly, if the user
choose TM

i instead of TM
1 as the best valid parse tree, our

system will fully instantiate TM
i in the third step and update

the interactions.

Query Tree Translator. Given the query tree verified
by the user, the translator utilizes its structure to generate
appropriate structure in the SQL expression and completes
the foreign-key-primary-key (FK-PK) join paths. The result
SQL statement may contain aggregate functions, multi-level
subqueries, and various types of joins, among other things.
Finally, our system evaluates the translated SQL statement
against an RDBMS and returns the query results back to
the user.

4. PARSE TREE NODE INTERPRETATION
To understand the linguistic parse tree from the database’s

perspective, we first need to identify the parse tree nodes
(words/phrases) that can be mapped to SQL components.
Such nodes can be further divided into different types as
shown in Figure 4, according to the type of SQL components

author�

return�

VLDB�after�LDB ftD

 2000�

paper�

Bob�VLLLDLDb

more�

number of�number of�

ROOT�

(d)�

author�h

return�

Bob�

more�

ROOT�

(c)�

VLDB� after�LDB ft

2000�

paper�

00
VLDB�after�DB ftD

2000�

paper�

author�VLDLLDLDth

00

return (SN: SELECT)
author (NN: author)
more (ON: >)
paper (NN: publication)
Bob (VN: author.name)
VLDB (VN: conference.name) �
after (ON: >)
2000 (VN: publication.year) �

(b)�

return�

after�

2000�

author�

VLDB ��LD

ft

ROOT�

more�
(a)�

paper� Bob�

T� M�

TM1� TM11�

Figure 3: (a) A Simplified Linguistic Parse Tree
from the Stanford Parser. (b) A Mapping Strat-
egy for the Nodes in the Parse Tree. (c) A Valid
Parse Tree. (d) A Query Tree after Inserting Im-
plicit Nodes.

���	����	� ����	�����
����������	��

�����#�
����0�
1� ��	���*)�!�.���	����

� �!�#�!�
����0�
1� ���� �!�#�!-��/�/�2-�32-�,2-����#���"�

�'��$���
����0�
1� ������!���$����'��$��-��/�/-�����

����
����0

1� ��!���$���������!��&!��'#�������

���'��
����0�
1� ��(��'��'���!�����&!��'#��

�'��$��!�
����0�
1� �		-��
�-������

	�����
����0	
1� �
�-��-�
���

Figure 4: Different Types of Nodes.

they mapped to. The identification of select node, operator
node, function node, quantifier node and logic node is inde-
pendent of the database being queried. In NaLIR, enumer-
ated sets of phrases are served as the real world “knowledge
base” to identify these five types of nodes.
In contrast, name nodes and value nodes correspond to

the meta-data and data, respectively, which entirely depend
on the database being queried. Often, the words/phrases
specified by the user are not exactly the same as the meta-
data/data in the database. In Section 4.2, we map these
parse tree nodes to the meta-data/data in the database
based on the similarity evaluation between them. Ambi-
guity exists when a parse tree node has multiple candidate
mappings. In such a case, our system returns multiple can-
didate mappings for the user to choose from. In Section 4.3,
we provide strategies to facilitate the user in recognizing the
desired mappings from possibly many candidate mappings.
Before that, in Section 4.1, we define the model we assume
for the rest of the paper.

4.1 Data Model
In this paper, a relation schema is defined as Ri(A

i
1, A

i
2,...,

Ai
ki), which consists of a relation name n(Ri) and a set of

attribute schemas {Ai
j |1 ≤ j ≤ ki}. A relation schema Ri

has one (or a set of) attribute schema as its primary key

76

�$%���$���/�
��##�!��

�$%���$���
�&$)�&)$�����)%&"$�

�)�$,��$���
�$�!%��&"$�

��#�!��!�,�
�$%�$�

�
��

�%�$�	!&�$�����

��&���!��+�/�
%��� ���$�#��

�$%���$����
�"�����##�$�

��"����

�)�$,��$���

������

��
�

��%)�&%�

��"������!����&��
�)�$,��$��%�

��!����&��
��##�!�%�

	!&�$��'*���")!���&"$�

��"����	!&�$#$�&�'"!%�

�$%���$���

Figure 2: System Architecture.

ones of these should be considered as publications. Even
if the included items are all unambiguous, when natural
language queries have complex structures with modifier at-
tachments, aggregations, comparisons, quantifiers, and con-
junctions, it may contain several ambiguities that cannot
be fixed by the system with confidence, from the inter-
pretation of an ambiguous phrase to the relationship be-
tween words/phrases. The number of possible interpreta-
tions grows exponentially with the number of unfixed ambi-
guities. As a result, there may be hundreds of candidate in-
terpretations for a complex natural language query, of which
only one is correct. Since these interpretations are often sim-
ilar to each other in semantics, it is very hard to develop an
effective ranking function for them. As a result, if the sys-
tem simply returns a list of hundreds of answers, the users
will be frustrated in verifying them.

Given the above two observations, instead of explaining
the query results, we explain the query interpretation pro-
cess, especially how each ambiguity is fixed, to the user. In
our system, we fix each “easy” ambiguity quietly. For each
“hard” ambiguity, we provide multiple interpretations for
the user to choose from. In such a way, even for a rather
complex natural language query, verifications for 3-4 ambi-
guities is enough, in which each verification is just making
choices from several options.

The ambiguities in processing a natural language query
are not often independent of each other. The resolution of
some ambiguities depends on the resolution of some other
ambiguities. For example, the interpretation of the whole
sentence depends on how each of its words/phrases is inter-
preted. So the disambiguation process and the verification
process should be organized in a few steps. In our system,
we organize them in three steps, as we will discuss in detail
in the next section. In each step, for a “hard” ambiguity,
we generate multiple interpretations for it and, at the same
time, use the best interpretation as the default choice to
process later steps. Each time a user changes a choice, our
system immediately reprocesses all the ambiguities in later
steps and updates the query results.

3. SYSTEM OVERVIEW
Figure 2 depicts the architecture of NaLIR1. The entire

system we have implemented consists of three main parts:

1In the current implementation, we use MySQL as the
RDBMS, and Stanford NLP Parser [7] as the dependency
natural language parser.

the query interpretation part, interactive communicator and
query tree translator. The query interpretation part, which
includes parse tree node mapper (Section 4) and structure
adjustor (Section 5), is responsible for interpreting the nat-
ural language query and representing the interpretation as
a query tree. The interactive communicator is responsible
for communicating with the user to ensure that the interpre-
tation process is correct. The query tree, possibly verified
by the user, will be translated into a SQL statement in the
query tree translator (Section 6) and then evaluated against
an RDBMS.

Dependency Parser. The first obstacle in translating
a natural language query into a SQL query is to under-
stand the natural language query linguistically. In our sys-
tem, we use the Stanford Parser [7] to generate a linguistic
parse tree from the natural language query. The linguis-
tic parse trees in our system are dependency parse trees,
in which each node is a word/phrase specified by the user
while each edge is a linguistic dependency relationship be-
tween two words/phrases. The simplified linguistic parse
tree of Query 2 in Figure 1 is shown in Figure 3 (a).

Parse Tree Node Mapper. The parse tree node map-
per identifies the nodes in the linguistic parse tree that can
be mapped to SQL components and tokenizes them into dif-
ferent tokens. In the mapping process, some nodes may fail
in mapping to any SQL component. In this case, our system
generates a warning to the user, telling her that these nodes
do not directly contribute in interpreting her query. Also,
some nodes may have multiple mappings, which causes am-
biguities in interpreting these nodes. For each such node,
the parse tree node mapper outputs the best mapping to
the parse tree structure adjustor by default and reports all
candidate mappings to the interactive communicator.

Parse Tree Structure Adjustor. After the node map-
ping (possibly with interactive communications with the
user), we assume that each node is understood by our sys-
tem. The next step is to correctly understand the tree struc-
ture from the database’s perspective. However, this is not
easy since the linguistic parse tree might be incorrect, out
of the semantic coverage of our system or ambiguous from
the database’s perspective. In those cases, we adjust the
structure of the linguistic parse tree and generate candidate
interpretations (query trees) for it. In particular, we adjust
the structure of the parse tree in two steps. In the first step,
we reformulate the nodes in the parse tree to make it fall in
the syntactic coverage of our system (valid parse tree). If

75

there are multiple candidate valid parse trees for the query,
we choose the best one as default input for the second step
and report top k of them to the interactive communicator.
In the second step, the chosen (or default) valid parse tree
is analyzed semantically and implicit nodes are inserted to
make it more semantically reasonable. This process is also
under the supervision of the user. After inserting implicit
nodes, we obtain the exact interpretation, represented as a
query tree, for the query.
Interactive Communicator. In case the system possi-

bly misunderstands the user, the interactive communicator
explains how her query is processed. In our system, inter-
active communications are organized in three steps, which
verify the intermediate results in the parse tree node map-
ping, parse tree structure reformulation, and implicit node
insertion, respectively. For each ambiguous part, we gener-
ate a multiple choice selection panel, in which each choice
corresponds to a different interpretation. Each time a user
changes a choice, our system immediately reprocesses all the
ambiguities in later steps.

Example 1. Consider the linguistic parse tree T in Fig-
ure 3(a). In the first step, the parse tree node mapper gener-
ates the best mapping for each node (represented as M and
shown in Figure 3 (b)) and reports to the user that the node
“VLDB” maps to “VLDB conference” and “VLDB Jour-
nal” in the database and that our system has chosen “VLDB
conference” as the default mapping. According to M , in the
second step, the parse tree adjustor reformulates the struc-
ture of T and generates the top k valid parse trees {TM

i }, in
which TM

1 (Figure 3 (c)) is the best. The interactive com-
municator explains each of the k valid parse trees in natural
language for the user to choose from. For example, TM

1 is
explained as “return the authors, where the papers of the au-
thor in VLDB after 2000 is more than Bob”. In the third
step, TM

1 is fully instantiated in the parse tree structure ad-
justor by inserting implicit nodes (shown in Figure 3 (d)).
The result query tree TM

11 is explained to the user as “return
the authors, where the number of papers of the author in
VLDB after 2000 is more than the number of paper of Bob
in VLDB after 2000.”, in which the underline part can be
canceled by the user. When the user changes the mapping
strategy M to M ′, our system will immediately use M ′ to
reprocess the second and third steps. Similarly, if the user
choose TM

i instead of TM
1 as the best valid parse tree, our

system will fully instantiate TM
i in the third step and update

the interactions.

Query Tree Translator. Given the query tree verified
by the user, the translator utilizes its structure to generate
appropriate structure in the SQL expression and completes
the foreign-key-primary-key (FK-PK) join paths. The result
SQL statement may contain aggregate functions, multi-level
subqueries, and various types of joins, among other things.
Finally, our system evaluates the translated SQL statement
against an RDBMS and returns the query results back to
the user.

4. PARSE TREE NODE INTERPRETATION
To understand the linguistic parse tree from the database’s

perspective, we first need to identify the parse tree nodes
(words/phrases) that can be mapped to SQL components.
Such nodes can be further divided into different types as
shown in Figure 4, according to the type of SQL components

author�

return�

VLDB�after�LDB ftD

 2000�

paper�

Bob�VLLLDLDb

more�

number of�number of�

ROOT�

(d)�

author�h

return�

Bob�

more�

ROOT�

(c)�

VLDB� after�LDB ft

2000�

paper�

00
VLDB�after�DB ftD

2000�

paper�

author�VLDLLDLDth

00

return (SN: SELECT)
author (NN: author)
more (ON: >)
paper (NN: publication)
Bob (VN: author.name)
VLDB (VN: conference.name) �
after (ON: >)
2000 (VN: publication.year) �

(b)�

return�

after�

2000�

author�

VLDB ��LD

ft

ROOT�

more�
(a)�

paper� Bob�

T� M�

TM1� TM11�

Figure 3: (a) A Simplified Linguistic Parse Tree
from the Stanford Parser. (b) A Mapping Strat-
egy for the Nodes in the Parse Tree. (c) A Valid
Parse Tree. (d) A Query Tree after Inserting Im-
plicit Nodes.

���	����	� ����	�����
����������	��

�����#�
����0�
1� ��	���*)�!�.���	����

� �!�#�!�
����0�
1� ���� �!�#�!-��/�/�2-�32-�,2-����#���"�

�'��$���
����0�
1� ������!���$����'��$��-��/�/-�����

����
����0

1� ��!���$���������!��&!��'#�������

���'��
����0�
1� ��(��'��'���!�����&!��'#��

�'��$��!�
����0�
1� �		-��
�-������

	�����
����0	
1� �
�-��-�
���

Figure 4: Different Types of Nodes.

they mapped to. The identification of select node, operator
node, function node, quantifier node and logic node is inde-
pendent of the database being queried. In NaLIR, enumer-
ated sets of phrases are served as the real world “knowledge
base” to identify these five types of nodes.
In contrast, name nodes and value nodes correspond to

the meta-data and data, respectively, which entirely depend
on the database being queried. Often, the words/phrases
specified by the user are not exactly the same as the meta-
data/data in the database. In Section 4.2, we map these
parse tree nodes to the meta-data/data in the database
based on the similarity evaluation between them. Ambi-
guity exists when a parse tree node has multiple candidate
mappings. In such a case, our system returns multiple can-
didate mappings for the user to choose from. In Section 4.3,
we provide strategies to facilitate the user in recognizing the
desired mappings from possibly many candidate mappings.
Before that, in Section 4.1, we define the model we assume
for the rest of the paper.

4.1 Data Model
In this paper, a relation schema is defined as Ri(A

i
1, A

i
2,...,

Ai
ki), which consists of a relation name n(Ri) and a set of

attribute schemas {Ai
j |1 ≤ j ≤ ki}. A relation schema Ri

has one (or a set of) attribute schema as its primary key

76

there are multiple candidate valid parse trees for the query,
we choose the best one as default input for the second step
and report top k of them to the interactive communicator.
In the second step, the chosen (or default) valid parse tree
is analyzed semantically and implicit nodes are inserted to
make it more semantically reasonable. This process is also
under the supervision of the user. After inserting implicit
nodes, we obtain the exact interpretation, represented as a
query tree, for the query.

Interactive Communicator. In case the system possi-
bly misunderstands the user, the interactive communicator
explains how her query is processed. In our system, inter-
active communications are organized in three steps, which
verify the intermediate results in the parse tree node map-
ping, parse tree structure reformulation, and implicit node
insertion, respectively. For each ambiguous part, we gener-
ate a multiple choice selection panel, in which each choice
corresponds to a different interpretation. Each time a user
changes a choice, our system immediately reprocesses all the
ambiguities in later steps.

Example 1. Consider the linguistic parse tree T in Fig-
ure 3(a). In the first step, the parse tree node mapper gener-
ates the best mapping for each node (represented as M and
shown in Figure 3 (b)) and reports to the user that the node
“VLDB” maps to “VLDB conference” and “VLDB Jour-
nal” in the database and that our system has chosen “VLDB
conference” as the default mapping. According to M , in the
second step, the parse tree adjustor reformulates the struc-
ture of T and generates the top k valid parse trees {TM

i }, in
which TM

1 (Figure 3 (c)) is the best. The interactive com-
municator explains each of the k valid parse trees in natural
language for the user to choose from. For example, TM

1 is
explained as “return the authors, where the papers of the au-
thor in VLDB after 2000 is more than Bob”. In the third
step, TM

1 is fully instantiated in the parse tree structure ad-
justor by inserting implicit nodes (shown in Figure 3 (d)).
The result query tree TM

11 is explained to the user as “return
the authors, where the number of papers of the author in
VLDB after 2000 is more than the number of paper of Bob
in VLDB after 2000.”, in which the underline part can be
canceled by the user. When the user changes the mapping
strategy M to M ′, our system will immediately use M ′ to
reprocess the second and third steps. Similarly, if the user
choose TM

i instead of TM
1 as the best valid parse tree, our

system will fully instantiate TM
i in the third step and update

the interactions.

Query Tree Translator. Given the query tree verified
by the user, the translator utilizes its structure to generate
appropriate structure in the SQL expression and completes
the foreign-key-primary-key (FK-PK) join paths. The result
SQL statement may contain aggregate functions, multi-level
subqueries, and various types of joins, among other things.
Finally, our system evaluates the translated SQL statement
against an RDBMS and returns the query results back to
the user.

4. PARSE TREE NODE INTERPRETATION
To understand the linguistic parse tree from the database’s

perspective, we first need to identify the parse tree nodes
(words/phrases) that can be mapped to SQL components.
Such nodes can be further divided into different types as
shown in Figure 4, according to the type of SQL components

author�

return�

VLDB�after�LDB ftD

 2000�

paper�

Bob�VLLLDLDb

more�

number of�number of�

ROOT�

(d)�

author�h

return�

Bob�

more�

ROOT�

(c)�

VLDB� after�LDB ft

2000�

paper�

00
VLDB�after�DB ftD

2000�

paper�

author�VLDLLDLDth

00

return (SN: SELECT)
author (NN: author)
more (ON: >)
paper (NN: publication)
Bob (VN: author.name)
VLDB (VN: conference.name) �
after (ON: >)
2000 (VN: publication.year) �

(b)�

return�

after�

2000�

author�

VLDB ��LD

ft

ROOT�

more�
(a)�

paper� Bob�

T� M�

TM1� TM11�

Figure 3: (a) A Simplified Linguistic Parse Tree
from the Stanford Parser. (b) A Mapping Strat-
egy for the Nodes in the Parse Tree. (c) A Valid
Parse Tree. (d) A Query Tree after Inserting Im-
plicit Nodes.

���	����	� ����	�����
����������	��

�����#�
����0�
1� ��	���*)�!�.���	����

� �!�#�!�
����0�
1� ���� �!�#�!-��/�/�2-�32-�,2-����#���"�

�'��$���
����0�
1� ������!���$����'��$��-��/�/-�����

����
����0

1� ��!���$���������!��&!��'#�������

���'��
����0�
1� ��(��'��'���!�����&!��'#��

�'��$��!�
����0�
1� �		-��
�-������

	�����
����0	
1� �
�-��-�
���

Figure 4: Different Types of Nodes.

they mapped to. The identification of select node, operator
node, function node, quantifier node and logic node is inde-
pendent of the database being queried. In NaLIR, enumer-
ated sets of phrases are served as the real world “knowledge
base” to identify these five types of nodes.
In contrast, name nodes and value nodes correspond to

the meta-data and data, respectively, which entirely depend
on the database being queried. Often, the words/phrases
specified by the user are not exactly the same as the meta-
data/data in the database. In Section 4.2, we map these
parse tree nodes to the meta-data/data in the database
based on the similarity evaluation between them. Ambi-
guity exists when a parse tree node has multiple candidate
mappings. In such a case, our system returns multiple can-
didate mappings for the user to choose from. In Section 4.3,
we provide strategies to facilitate the user in recognizing the
desired mappings from possibly many candidate mappings.
Before that, in Section 4.1, we define the model we assume
for the rest of the paper.

4.1 Data Model
In this paper, a relation schema is defined as Ri(A

i
1, A

i
2,...,

Ai
ki), which consists of a relation name n(Ri) and a set of

attribute schemas {Ai
j |1 ≤ j ≤ ki}. A relation schema Ri

has one (or a set of) attribute schema as its primary key

76

NaLIR [Li@PVLDB’14] – Node Mapper

return authors
who have more

papers than
Bob in VLDB

after 2000

NaLIR [Li@PVLDB’14] – Tree Adjustor

• Analyzes the dependency tree with the mapped nodes
• Generates Query Trees – candidate interpretations of the NL query
• It can also adjust candidate query trees to make them syntactically

valid considering the SQL language
• Ranks the candidate query trees
• The "best" of them leads to the SQL query
• Adjustment and ranking based on a series of fixed heuristics.

�$%���$���/�
��##�!��

�$%���$���
�&$)�&)$�����)%&"$�

�)�$,��$���
�$�!%��&"$�

��#�!��!�,�
�$%�$�

�
��

�%�$�	!&�$�����

��&���!��+�/�
%��� ���$�#��

�$%���$����
�"�����##�$�

��"����

�)�$,��$���

������

��
�

��%)�&%�

��"������!����&��
�)�$,��$��%�

��!����&��
��##�!�%�

	!&�$��'*���")!���&"$�

��"����	!&�$#$�&�'"!%�

�$%���$���

Figure 2: System Architecture.

ones of these should be considered as publications. Even
if the included items are all unambiguous, when natural
language queries have complex structures with modifier at-
tachments, aggregations, comparisons, quantifiers, and con-
junctions, it may contain several ambiguities that cannot
be fixed by the system with confidence, from the inter-
pretation of an ambiguous phrase to the relationship be-
tween words/phrases. The number of possible interpreta-
tions grows exponentially with the number of unfixed ambi-
guities. As a result, there may be hundreds of candidate in-
terpretations for a complex natural language query, of which
only one is correct. Since these interpretations are often sim-
ilar to each other in semantics, it is very hard to develop an
effective ranking function for them. As a result, if the sys-
tem simply returns a list of hundreds of answers, the users
will be frustrated in verifying them.

Given the above two observations, instead of explaining
the query results, we explain the query interpretation pro-
cess, especially how each ambiguity is fixed, to the user. In
our system, we fix each “easy” ambiguity quietly. For each
“hard” ambiguity, we provide multiple interpretations for
the user to choose from. In such a way, even for a rather
complex natural language query, verifications for 3-4 ambi-
guities is enough, in which each verification is just making
choices from several options.

The ambiguities in processing a natural language query
are not often independent of each other. The resolution of
some ambiguities depends on the resolution of some other
ambiguities. For example, the interpretation of the whole
sentence depends on how each of its words/phrases is inter-
preted. So the disambiguation process and the verification
process should be organized in a few steps. In our system,
we organize them in three steps, as we will discuss in detail
in the next section. In each step, for a “hard” ambiguity,
we generate multiple interpretations for it and, at the same
time, use the best interpretation as the default choice to
process later steps. Each time a user changes a choice, our
system immediately reprocesses all the ambiguities in later
steps and updates the query results.

3. SYSTEM OVERVIEW
Figure 2 depicts the architecture of NaLIR1. The entire

system we have implemented consists of three main parts:

1In the current implementation, we use MySQL as the
RDBMS, and Stanford NLP Parser [7] as the dependency
natural language parser.

the query interpretation part, interactive communicator and
query tree translator. The query interpretation part, which
includes parse tree node mapper (Section 4) and structure
adjustor (Section 5), is responsible for interpreting the nat-
ural language query and representing the interpretation as
a query tree. The interactive communicator is responsible
for communicating with the user to ensure that the interpre-
tation process is correct. The query tree, possibly verified
by the user, will be translated into a SQL statement in the
query tree translator (Section 6) and then evaluated against
an RDBMS.

Dependency Parser. The first obstacle in translating
a natural language query into a SQL query is to under-
stand the natural language query linguistically. In our sys-
tem, we use the Stanford Parser [7] to generate a linguistic
parse tree from the natural language query. The linguis-
tic parse trees in our system are dependency parse trees,
in which each node is a word/phrase specified by the user
while each edge is a linguistic dependency relationship be-
tween two words/phrases. The simplified linguistic parse
tree of Query 2 in Figure 1 is shown in Figure 3 (a).

Parse Tree Node Mapper. The parse tree node map-
per identifies the nodes in the linguistic parse tree that can
be mapped to SQL components and tokenizes them into dif-
ferent tokens. In the mapping process, some nodes may fail
in mapping to any SQL component. In this case, our system
generates a warning to the user, telling her that these nodes
do not directly contribute in interpreting her query. Also,
some nodes may have multiple mappings, which causes am-
biguities in interpreting these nodes. For each such node,
the parse tree node mapper outputs the best mapping to
the parse tree structure adjustor by default and reports all
candidate mappings to the interactive communicator.

Parse Tree Structure Adjustor. After the node map-
ping (possibly with interactive communications with the
user), we assume that each node is understood by our sys-
tem. The next step is to correctly understand the tree struc-
ture from the database’s perspective. However, this is not
easy since the linguistic parse tree might be incorrect, out
of the semantic coverage of our system or ambiguous from
the database’s perspective. In those cases, we adjust the
structure of the linguistic parse tree and generate candidate
interpretations (query trees) for it. In particular, we adjust
the structure of the parse tree in two steps. In the first step,
we reformulate the nodes in the parse tree to make it fall in
the syntactic coverage of our system (valid parse tree). If

75

there are multiple candidate valid parse trees for the query,
we choose the best one as default input for the second step
and report top k of them to the interactive communicator.
In the second step, the chosen (or default) valid parse tree
is analyzed semantically and implicit nodes are inserted to
make it more semantically reasonable. This process is also
under the supervision of the user. After inserting implicit
nodes, we obtain the exact interpretation, represented as a
query tree, for the query.
Interactive Communicator. In case the system possi-

bly misunderstands the user, the interactive communicator
explains how her query is processed. In our system, inter-
active communications are organized in three steps, which
verify the intermediate results in the parse tree node map-
ping, parse tree structure reformulation, and implicit node
insertion, respectively. For each ambiguous part, we gener-
ate a multiple choice selection panel, in which each choice
corresponds to a different interpretation. Each time a user
changes a choice, our system immediately reprocesses all the
ambiguities in later steps.

Example 1. Consider the linguistic parse tree T in Fig-
ure 3(a). In the first step, the parse tree node mapper gener-
ates the best mapping for each node (represented as M and
shown in Figure 3 (b)) and reports to the user that the node
“VLDB” maps to “VLDB conference” and “VLDB Jour-
nal” in the database and that our system has chosen “VLDB
conference” as the default mapping. According to M , in the
second step, the parse tree adjustor reformulates the struc-
ture of T and generates the top k valid parse trees {TM

i }, in
which TM

1 (Figure 3 (c)) is the best. The interactive com-
municator explains each of the k valid parse trees in natural
language for the user to choose from. For example, TM

1 is
explained as “return the authors, where the papers of the au-
thor in VLDB after 2000 is more than Bob”. In the third
step, TM

1 is fully instantiated in the parse tree structure ad-
justor by inserting implicit nodes (shown in Figure 3 (d)).
The result query tree TM

11 is explained to the user as “return
the authors, where the number of papers of the author in
VLDB after 2000 is more than the number of paper of Bob
in VLDB after 2000.”, in which the underline part can be
canceled by the user. When the user changes the mapping
strategy M to M ′, our system will immediately use M ′ to
reprocess the second and third steps. Similarly, if the user
choose TM

i instead of TM
1 as the best valid parse tree, our

system will fully instantiate TM
i in the third step and update

the interactions.

Query Tree Translator. Given the query tree verified
by the user, the translator utilizes its structure to generate
appropriate structure in the SQL expression and completes
the foreign-key-primary-key (FK-PK) join paths. The result
SQL statement may contain aggregate functions, multi-level
subqueries, and various types of joins, among other things.
Finally, our system evaluates the translated SQL statement
against an RDBMS and returns the query results back to
the user.

4. PARSE TREE NODE INTERPRETATION
To understand the linguistic parse tree from the database’s

perspective, we first need to identify the parse tree nodes
(words/phrases) that can be mapped to SQL components.
Such nodes can be further divided into different types as
shown in Figure 4, according to the type of SQL components

author�

return�

VLDB�after�LDB ftD

 2000�

paper�

Bob�VLLLDLDb

more�

number of�number of�

ROOT�

(d)�

author�h

return�

Bob�

more�

ROOT�

(c)�

VLDB� after�LDB ft

2000�

paper�

00
VLDB�after�DB ftD

2000�

paper�

author�VLDLLDLDth

00

return (SN: SELECT)
author (NN: author)
more (ON: >)
paper (NN: publication)
Bob (VN: author.name)
VLDB (VN: conference.name) �
after (ON: >)
2000 (VN: publication.year) �

(b)�

return�

after�

2000�

author�

VLDB ��LD

ft

ROOT�

more�
(a)�

paper� Bob�

T� M�

TM1� TM11�

Figure 3: (a) A Simplified Linguistic Parse Tree
from the Stanford Parser. (b) A Mapping Strat-
egy for the Nodes in the Parse Tree. (c) A Valid
Parse Tree. (d) A Query Tree after Inserting Im-
plicit Nodes.

���	����	� ����	�����
����������	��

�����#�
����0�
1� ��	���*)�!�.���	����

� �!�#�!�
����0�
1� ���� �!�#�!-��/�/�2-�32-�,2-����#���"�

�'��$���
����0�
1� ������!���$����'��$��-��/�/-�����

����
����0

1� ��!���$���������!��&!��'#�������

���'��
����0�
1� ��(��'��'���!�����&!��'#��

�'��$��!�
����0�
1� �		-��
�-������

	�����
����0	
1� �
�-��-�
���

Figure 4: Different Types of Nodes.

they mapped to. The identification of select node, operator
node, function node, quantifier node and logic node is inde-
pendent of the database being queried. In NaLIR, enumer-
ated sets of phrases are served as the real world “knowledge
base” to identify these five types of nodes.
In contrast, name nodes and value nodes correspond to

the meta-data and data, respectively, which entirely depend
on the database being queried. Often, the words/phrases
specified by the user are not exactly the same as the meta-
data/data in the database. In Section 4.2, we map these
parse tree nodes to the meta-data/data in the database
based on the similarity evaluation between them. Ambi-
guity exists when a parse tree node has multiple candidate
mappings. In such a case, our system returns multiple can-
didate mappings for the user to choose from. In Section 4.3,
we provide strategies to facilitate the user in recognizing the
desired mappings from possibly many candidate mappings.
Before that, in Section 4.1, we define the model we assume
for the rest of the paper.

4.1 Data Model
In this paper, a relation schema is defined as Ri(A

i
1, A

i
2,...,

Ai
ki), which consists of a relation name n(Ri) and a set of

attribute schemas {Ai
j |1 ≤ j ≤ ki}. A relation schema Ri

has one (or a set of) attribute schema as its primary key

76

there are multiple candidate valid parse trees for the query,
we choose the best one as default input for the second step
and report top k of them to the interactive communicator.
In the second step, the chosen (or default) valid parse tree
is analyzed semantically and implicit nodes are inserted to
make it more semantically reasonable. This process is also
under the supervision of the user. After inserting implicit
nodes, we obtain the exact interpretation, represented as a
query tree, for the query.

Interactive Communicator. In case the system possi-
bly misunderstands the user, the interactive communicator
explains how her query is processed. In our system, inter-
active communications are organized in three steps, which
verify the intermediate results in the parse tree node map-
ping, parse tree structure reformulation, and implicit node
insertion, respectively. For each ambiguous part, we gener-
ate a multiple choice selection panel, in which each choice
corresponds to a different interpretation. Each time a user
changes a choice, our system immediately reprocesses all the
ambiguities in later steps.

Example 1. Consider the linguistic parse tree T in Fig-
ure 3(a). In the first step, the parse tree node mapper gener-
ates the best mapping for each node (represented as M and
shown in Figure 3 (b)) and reports to the user that the node
“VLDB” maps to “VLDB conference” and “VLDB Jour-
nal” in the database and that our system has chosen “VLDB
conference” as the default mapping. According to M , in the
second step, the parse tree adjustor reformulates the struc-
ture of T and generates the top k valid parse trees {TM

i }, in
which TM

1 (Figure 3 (c)) is the best. The interactive com-
municator explains each of the k valid parse trees in natural
language for the user to choose from. For example, TM

1 is
explained as “return the authors, where the papers of the au-
thor in VLDB after 2000 is more than Bob”. In the third
step, TM

1 is fully instantiated in the parse tree structure ad-
justor by inserting implicit nodes (shown in Figure 3 (d)).
The result query tree TM

11 is explained to the user as “return
the authors, where the number of papers of the author in
VLDB after 2000 is more than the number of paper of Bob
in VLDB after 2000.”, in which the underline part can be
canceled by the user. When the user changes the mapping
strategy M to M ′, our system will immediately use M ′ to
reprocess the second and third steps. Similarly, if the user
choose TM

i instead of TM
1 as the best valid parse tree, our

system will fully instantiate TM
i in the third step and update

the interactions.

Query Tree Translator. Given the query tree verified
by the user, the translator utilizes its structure to generate
appropriate structure in the SQL expression and completes
the foreign-key-primary-key (FK-PK) join paths. The result
SQL statement may contain aggregate functions, multi-level
subqueries, and various types of joins, among other things.
Finally, our system evaluates the translated SQL statement
against an RDBMS and returns the query results back to
the user.

4. PARSE TREE NODE INTERPRETATION
To understand the linguistic parse tree from the database’s

perspective, we first need to identify the parse tree nodes
(words/phrases) that can be mapped to SQL components.
Such nodes can be further divided into different types as
shown in Figure 4, according to the type of SQL components

author�

return�

VLDB�after�LDB ftD

 2000�

paper�

Bob�VLLLDLDb

more�

number of�number of�

ROOT�

(d)�

author�h

return�

Bob�

more�

ROOT�

(c)�

VLDB� after�LDB ft

2000�

paper�

00
VLDB�after�DB ftD

2000�

paper�

author�VLDLLDLDth

00

return (SN: SELECT)
author (NN: author)
more (ON: >)
paper (NN: publication)
Bob (VN: author.name)
VLDB (VN: conference.name) �
after (ON: >)
2000 (VN: publication.year) �

(b)�

return�

after�

2000�

author�

VLDB ��LD

ft

ROOT�

more�
(a)�

paper� Bob�

T� M�

TM1� TM11�

Figure 3: (a) A Simplified Linguistic Parse Tree
from the Stanford Parser. (b) A Mapping Strat-
egy for the Nodes in the Parse Tree. (c) A Valid
Parse Tree. (d) A Query Tree after Inserting Im-
plicit Nodes.

���	����	� ����	�����
����������	��

�����#�
����0�
1� ��	���*)�!�.���	����

� �!�#�!�
����0�
1� ���� �!�#�!-��/�/�2-�32-�,2-����#���"�

�'��$���
����0�
1� ������!���$����'��$��-��/�/-�����

����
����0

1� ��!���$���������!��&!��'#�������

���'��
����0�
1� ��(��'��'���!�����&!��'#��

�'��$��!�
����0�
1� �		-��
�-������

	�����
����0	
1� �
�-��-�
���

Figure 4: Different Types of Nodes.

they mapped to. The identification of select node, operator
node, function node, quantifier node and logic node is inde-
pendent of the database being queried. In NaLIR, enumer-
ated sets of phrases are served as the real world “knowledge
base” to identify these five types of nodes.
In contrast, name nodes and value nodes correspond to

the meta-data and data, respectively, which entirely depend
on the database being queried. Often, the words/phrases
specified by the user are not exactly the same as the meta-
data/data in the database. In Section 4.2, we map these
parse tree nodes to the meta-data/data in the database
based on the similarity evaluation between them. Ambi-
guity exists when a parse tree node has multiple candidate
mappings. In such a case, our system returns multiple can-
didate mappings for the user to choose from. In Section 4.3,
we provide strategies to facilitate the user in recognizing the
desired mappings from possibly many candidate mappings.
Before that, in Section 4.1, we define the model we assume
for the rest of the paper.

4.1 Data Model
In this paper, a relation schema is defined as Ri(A

i
1, A

i
2,...,

Ai
ki), which consists of a relation name n(Ri) and a set of

attribute schemas {Ai
j |1 ≤ j ≤ ki}. A relation schema Ri

has one (or a set of) attribute schema as its primary key

76

there are multiple candidate valid parse trees for the query,
we choose the best one as default input for the second step
and report top k of them to the interactive communicator.
In the second step, the chosen (or default) valid parse tree
is analyzed semantically and implicit nodes are inserted to
make it more semantically reasonable. This process is also
under the supervision of the user. After inserting implicit
nodes, we obtain the exact interpretation, represented as a
query tree, for the query.

Interactive Communicator. In case the system possi-
bly misunderstands the user, the interactive communicator
explains how her query is processed. In our system, inter-
active communications are organized in three steps, which
verify the intermediate results in the parse tree node map-
ping, parse tree structure reformulation, and implicit node
insertion, respectively. For each ambiguous part, we gener-
ate a multiple choice selection panel, in which each choice
corresponds to a different interpretation. Each time a user
changes a choice, our system immediately reprocesses all the
ambiguities in later steps.

Example 1. Consider the linguistic parse tree T in Fig-
ure 3(a). In the first step, the parse tree node mapper gener-
ates the best mapping for each node (represented as M and
shown in Figure 3 (b)) and reports to the user that the node
“VLDB” maps to “VLDB conference” and “VLDB Jour-
nal” in the database and that our system has chosen “VLDB
conference” as the default mapping. According to M , in the
second step, the parse tree adjustor reformulates the struc-
ture of T and generates the top k valid parse trees {TM

i }, in
which TM

1 (Figure 3 (c)) is the best. The interactive com-
municator explains each of the k valid parse trees in natural
language for the user to choose from. For example, TM

1 is
explained as “return the authors, where the papers of the au-
thor in VLDB after 2000 is more than Bob”. In the third
step, TM

1 is fully instantiated in the parse tree structure ad-
justor by inserting implicit nodes (shown in Figure 3 (d)).
The result query tree TM

11 is explained to the user as “return
the authors, where the number of papers of the author in
VLDB after 2000 is more than the number of paper of Bob
in VLDB after 2000.”, in which the underline part can be
canceled by the user. When the user changes the mapping
strategy M to M ′, our system will immediately use M ′ to
reprocess the second and third steps. Similarly, if the user
choose TM

i instead of TM
1 as the best valid parse tree, our

system will fully instantiate TM
i in the third step and update

the interactions.

Query Tree Translator. Given the query tree verified
by the user, the translator utilizes its structure to generate
appropriate structure in the SQL expression and completes
the foreign-key-primary-key (FK-PK) join paths. The result
SQL statement may contain aggregate functions, multi-level
subqueries, and various types of joins, among other things.
Finally, our system evaluates the translated SQL statement
against an RDBMS and returns the query results back to
the user.

4. PARSE TREE NODE INTERPRETATION
To understand the linguistic parse tree from the database’s

perspective, we first need to identify the parse tree nodes
(words/phrases) that can be mapped to SQL components.
Such nodes can be further divided into different types as
shown in Figure 4, according to the type of SQL components

author�

return�

VLDB�after�LDB ftD

 2000�

paper�

Bob�VLLLDLDb

more�

number of�number of�

ROOT�

(d)�

author�h

return�

Bob�

more�

ROOT�

(c)�

VLDB� after�LDB ft

2000�

paper�

00
VLDB�after�DB ftD

2000�

paper�

author�VLDLLDLDth

00

return (SN: SELECT)
author (NN: author)
more (ON: >)
paper (NN: publication)
Bob (VN: author.name)
VLDB (VN: conference.name) �
after (ON: >)
2000 (VN: publication.year) �

(b)�

return�

after�

2000�

author�

VLDB ��LD

ft

ROOT�

more�
(a)�

paper� Bob�

T� M�

TM1� TM11�

Figure 3: (a) A Simplified Linguistic Parse Tree
from the Stanford Parser. (b) A Mapping Strat-
egy for the Nodes in the Parse Tree. (c) A Valid
Parse Tree. (d) A Query Tree after Inserting Im-
plicit Nodes.

���	����	� ����	�����
����������	��

�����#�
����0�
1� ��	���*)�!�.���	����

� �!�#�!�
����0�
1� ���� �!�#�!-��/�/�2-�32-�,2-����#���"�

�'��$���
����0�
1� ������!���$����'��$��-��/�/-�����

����
����0

1� ��!���$���������!��&!��'#�������

���'��
����0�
1� ��(��'��'���!�����&!��'#��

�'��$��!�
����0�
1� �		-��
�-������

	�����
����0	
1� �
�-��-�
���

Figure 4: Different Types of Nodes.

they mapped to. The identification of select node, operator
node, function node, quantifier node and logic node is inde-
pendent of the database being queried. In NaLIR, enumer-
ated sets of phrases are served as the real world “knowledge
base” to identify these five types of nodes.
In contrast, name nodes and value nodes correspond to

the meta-data and data, respectively, which entirely depend
on the database being queried. Often, the words/phrases
specified by the user are not exactly the same as the meta-
data/data in the database. In Section 4.2, we map these
parse tree nodes to the meta-data/data in the database
based on the similarity evaluation between them. Ambi-
guity exists when a parse tree node has multiple candidate
mappings. In such a case, our system returns multiple can-
didate mappings for the user to choose from. In Section 4.3,
we provide strategies to facilitate the user in recognizing the
desired mappings from possibly many candidate mappings.
Before that, in Section 4.1, we define the model we assume
for the rest of the paper.

4.1 Data Model
In this paper, a relation schema is defined as Ri(A

i
1, A

i
2,...,

Ai
ki), which consists of a relation name n(Ri) and a set of

attribute schemas {Ai
j |1 ≤ j ≤ ki}. A relation schema Ri

has one (or a set of) attribute schema as its primary key

76

there are multiple candidate valid parse trees for the query,
we choose the best one as default input for the second step
and report top k of them to the interactive communicator.
In the second step, the chosen (or default) valid parse tree
is analyzed semantically and implicit nodes are inserted to
make it more semantically reasonable. This process is also
under the supervision of the user. After inserting implicit
nodes, we obtain the exact interpretation, represented as a
query tree, for the query.

Interactive Communicator. In case the system possi-
bly misunderstands the user, the interactive communicator
explains how her query is processed. In our system, inter-
active communications are organized in three steps, which
verify the intermediate results in the parse tree node map-
ping, parse tree structure reformulation, and implicit node
insertion, respectively. For each ambiguous part, we gener-
ate a multiple choice selection panel, in which each choice
corresponds to a different interpretation. Each time a user
changes a choice, our system immediately reprocesses all the
ambiguities in later steps.

Example 1. Consider the linguistic parse tree T in Fig-
ure 3(a). In the first step, the parse tree node mapper gener-
ates the best mapping for each node (represented as M and
shown in Figure 3 (b)) and reports to the user that the node
“VLDB” maps to “VLDB conference” and “VLDB Jour-
nal” in the database and that our system has chosen “VLDB
conference” as the default mapping. According to M , in the
second step, the parse tree adjustor reformulates the struc-
ture of T and generates the top k valid parse trees {TM

i }, in
which TM

1 (Figure 3 (c)) is the best. The interactive com-
municator explains each of the k valid parse trees in natural
language for the user to choose from. For example, TM

1 is
explained as “return the authors, where the papers of the au-
thor in VLDB after 2000 is more than Bob”. In the third
step, TM

1 is fully instantiated in the parse tree structure ad-
justor by inserting implicit nodes (shown in Figure 3 (d)).
The result query tree TM

11 is explained to the user as “return
the authors, where the number of papers of the author in
VLDB after 2000 is more than the number of paper of Bob
in VLDB after 2000.”, in which the underline part can be
canceled by the user. When the user changes the mapping
strategy M to M ′, our system will immediately use M ′ to
reprocess the second and third steps. Similarly, if the user
choose TM

i instead of TM
1 as the best valid parse tree, our

system will fully instantiate TM
i in the third step and update

the interactions.

Query Tree Translator. Given the query tree verified
by the user, the translator utilizes its structure to generate
appropriate structure in the SQL expression and completes
the foreign-key-primary-key (FK-PK) join paths. The result
SQL statement may contain aggregate functions, multi-level
subqueries, and various types of joins, among other things.
Finally, our system evaluates the translated SQL statement
against an RDBMS and returns the query results back to
the user.

4. PARSE TREE NODE INTERPRETATION
To understand the linguistic parse tree from the database’s

perspective, we first need to identify the parse tree nodes
(words/phrases) that can be mapped to SQL components.
Such nodes can be further divided into different types as
shown in Figure 4, according to the type of SQL components

author�

return�

VLDB�after�LDB ftD

 2000�

paper�

Bob�VLLLDLDb

more�

number of�number of�

ROOT�

(d)�

author�h

return�

Bob�

more�

ROOT�

(c)�

VLDB� after�LDB ft

2000�

paper�

00
VLDB�after�DB ftD

2000�

paper�

author�VLDLLDLDth

00

return (SN: SELECT)
author (NN: author)
more (ON: >)
paper (NN: publication)
Bob (VN: author.name)
VLDB (VN: conference.name) �
after (ON: >)
2000 (VN: publication.year) �

(b)�

return�

after�

2000�

author�

VLDB ��LD

ft

ROOT�

more�
(a)�

paper� Bob�

T� M�

TM1� TM11�

Figure 3: (a) A Simplified Linguistic Parse Tree
from the Stanford Parser. (b) A Mapping Strat-
egy for the Nodes in the Parse Tree. (c) A Valid
Parse Tree. (d) A Query Tree after Inserting Im-
plicit Nodes.

���	����	� ����	�����
����������	��

�����#�
����0�
1� ��	���*)�!�.���	����

� �!�#�!�
����0�
1� ���� �!�#�!-��/�/�2-�32-�,2-����#���"�

�'��$���
����0�
1� ������!���$����'��$��-��/�/-�����

����
����0

1� ��!���$���������!��&!��'#�������

���'��
����0�
1� ��(��'��'���!�����&!��'#��

�'��$��!�
����0�
1� �		-��
�-������

	�����
����0	
1� �
�-��-�
���

Figure 4: Different Types of Nodes.

they mapped to. The identification of select node, operator
node, function node, quantifier node and logic node is inde-
pendent of the database being queried. In NaLIR, enumer-
ated sets of phrases are served as the real world “knowledge
base” to identify these five types of nodes.

In contrast, name nodes and value nodes correspond to
the meta-data and data, respectively, which entirely depend
on the database being queried. Often, the words/phrases
specified by the user are not exactly the same as the meta-
data/data in the database. In Section 4.2, we map these
parse tree nodes to the meta-data/data in the database
based on the similarity evaluation between them. Ambi-
guity exists when a parse tree node has multiple candidate
mappings. In such a case, our system returns multiple can-
didate mappings for the user to choose from. In Section 4.3,
we provide strategies to facilitate the user in recognizing the
desired mappings from possibly many candidate mappings.
Before that, in Section 4.1, we define the model we assume
for the rest of the paper.

4.1 Data Model
In this paper, a relation schema is defined as Ri(A

i
1, A

i
2,...,

Ai
ki), which consists of a relation name n(Ri) and a set of

attribute schemas {Ai
j |1 ≤ j ≤ ki}. A relation schema Ri

has one (or a set of) attribute schema as its primary key

76

NaLIR [Li@PVLDB’14] – Tree Adjustor

return authors
who have more

papers than
Bob in VLDB

after 2000

NaLIR [Li@PVLDB’14] – User Interaction

• Several problems can arise in the process
• Parsing can generate spurious nodes from the query point of view

• Mapping can fail or be ambiguous

• Tree adjus@ng and ranking may fail

• In all these cases, the user is called to intervene
• Perform adjustments and changes manually.

Queries

With User

Interaction

No User

Interaction

Easy 34/34 24/32

Medium 34/34 23/34

Hard 20/30 15/32

Experiments with the Microsoft
Academic Search DB

�$%���$���/�
��##�!��

�$%���$���
�&$)�&)$�����)%&"$�

�)�$,��$���
�$�!%��&"$�

��#�!��!�,�
�$%�$�

�
��

�%�$�	!&�$�����

��&���!��+�/�
%��� ���$�#��

�$%���$����
�"�����##�$�

��"����

�)�$,��$���

������

��
�

��%)�&%�

��"������!����&��
�)�$,��$��%�

��!����&��
��##�!�%�

	!&�$��'*���")!���&"$�

��"����	!&�$#$�&�'"!%�

�$%���$���

Figure 2: System Architecture.

ones of these should be considered as publications. Even
if the included items are all unambiguous, when natural
language queries have complex structures with modifier at-
tachments, aggregations, comparisons, quantifiers, and con-
junctions, it may contain several ambiguities that cannot
be fixed by the system with confidence, from the inter-
pretation of an ambiguous phrase to the relationship be-
tween words/phrases. The number of possible interpreta-
tions grows exponentially with the number of unfixed ambi-
guities. As a result, there may be hundreds of candidate in-
terpretations for a complex natural language query, of which
only one is correct. Since these interpretations are often sim-
ilar to each other in semantics, it is very hard to develop an
effective ranking function for them. As a result, if the sys-
tem simply returns a list of hundreds of answers, the users
will be frustrated in verifying them.

Given the above two observations, instead of explaining
the query results, we explain the query interpretation pro-
cess, especially how each ambiguity is fixed, to the user. In
our system, we fix each “easy” ambiguity quietly. For each
“hard” ambiguity, we provide multiple interpretations for
the user to choose from. In such a way, even for a rather
complex natural language query, verifications for 3-4 ambi-
guities is enough, in which each verification is just making
choices from several options.

The ambiguities in processing a natural language query
are not often independent of each other. The resolution of
some ambiguities depends on the resolution of some other
ambiguities. For example, the interpretation of the whole
sentence depends on how each of its words/phrases is inter-
preted. So the disambiguation process and the verification
process should be organized in a few steps. In our system,
we organize them in three steps, as we will discuss in detail
in the next section. In each step, for a “hard” ambiguity,
we generate multiple interpretations for it and, at the same
time, use the best interpretation as the default choice to
process later steps. Each time a user changes a choice, our
system immediately reprocesses all the ambiguities in later
steps and updates the query results.

3. SYSTEM OVERVIEW
Figure 2 depicts the architecture of NaLIR1. The entire

system we have implemented consists of three main parts:

1In the current implementation, we use MySQL as the
RDBMS, and Stanford NLP Parser [7] as the dependency
natural language parser.

the query interpretation part, interactive communicator and
query tree translator. The query interpretation part, which
includes parse tree node mapper (Section 4) and structure
adjustor (Section 5), is responsible for interpreting the nat-
ural language query and representing the interpretation as
a query tree. The interactive communicator is responsible
for communicating with the user to ensure that the interpre-
tation process is correct. The query tree, possibly verified
by the user, will be translated into a SQL statement in the
query tree translator (Section 6) and then evaluated against
an RDBMS.

Dependency Parser. The first obstacle in translating
a natural language query into a SQL query is to under-
stand the natural language query linguistically. In our sys-
tem, we use the Stanford Parser [7] to generate a linguistic
parse tree from the natural language query. The linguis-
tic parse trees in our system are dependency parse trees,
in which each node is a word/phrase specified by the user
while each edge is a linguistic dependency relationship be-
tween two words/phrases. The simplified linguistic parse
tree of Query 2 in Figure 1 is shown in Figure 3 (a).

Parse Tree Node Mapper. The parse tree node map-
per identifies the nodes in the linguistic parse tree that can
be mapped to SQL components and tokenizes them into dif-
ferent tokens. In the mapping process, some nodes may fail
in mapping to any SQL component. In this case, our system
generates a warning to the user, telling her that these nodes
do not directly contribute in interpreting her query. Also,
some nodes may have multiple mappings, which causes am-
biguities in interpreting these nodes. For each such node,
the parse tree node mapper outputs the best mapping to
the parse tree structure adjustor by default and reports all
candidate mappings to the interactive communicator.

Parse Tree Structure Adjustor. After the node map-
ping (possibly with interactive communications with the
user), we assume that each node is understood by our sys-
tem. The next step is to correctly understand the tree struc-
ture from the database’s perspective. However, this is not
easy since the linguistic parse tree might be incorrect, out
of the semantic coverage of our system or ambiguous from
the database’s perspective. In those cases, we adjust the
structure of the linguistic parse tree and generate candidate
interpretations (query trees) for it. In particular, we adjust
the structure of the parse tree in two steps. In the first step,
we reformulate the nodes in the parse tree to make it fall in
the syntactic coverage of our system (valid parse tree). If

75

there are multiple candidate valid parse trees for the query,
we choose the best one as default input for the second step
and report top k of them to the interactive communicator.
In the second step, the chosen (or default) valid parse tree
is analyzed semantically and implicit nodes are inserted to
make it more semantically reasonable. This process is also
under the supervision of the user. After inserting implicit
nodes, we obtain the exact interpretation, represented as a
query tree, for the query.
Interactive Communicator. In case the system possi-

bly misunderstands the user, the interactive communicator
explains how her query is processed. In our system, inter-
active communications are organized in three steps, which
verify the intermediate results in the parse tree node map-
ping, parse tree structure reformulation, and implicit node
insertion, respectively. For each ambiguous part, we gener-
ate a multiple choice selection panel, in which each choice
corresponds to a different interpretation. Each time a user
changes a choice, our system immediately reprocesses all the
ambiguities in later steps.

Example 1. Consider the linguistic parse tree T in Fig-
ure 3(a). In the first step, the parse tree node mapper gener-
ates the best mapping for each node (represented as M and
shown in Figure 3 (b)) and reports to the user that the node
“VLDB” maps to “VLDB conference” and “VLDB Jour-
nal” in the database and that our system has chosen “VLDB
conference” as the default mapping. According to M , in the
second step, the parse tree adjustor reformulates the struc-
ture of T and generates the top k valid parse trees {TM

i }, in
which TM

1 (Figure 3 (c)) is the best. The interactive com-
municator explains each of the k valid parse trees in natural
language for the user to choose from. For example, TM

1 is
explained as “return the authors, where the papers of the au-
thor in VLDB after 2000 is more than Bob”. In the third
step, TM

1 is fully instantiated in the parse tree structure ad-
justor by inserting implicit nodes (shown in Figure 3 (d)).
The result query tree TM

11 is explained to the user as “return
the authors, where the number of papers of the author in
VLDB after 2000 is more than the number of paper of Bob
in VLDB after 2000.”, in which the underline part can be
canceled by the user. When the user changes the mapping
strategy M to M ′, our system will immediately use M ′ to
reprocess the second and third steps. Similarly, if the user
choose TM

i instead of TM
1 as the best valid parse tree, our

system will fully instantiate TM
i in the third step and update

the interactions.

Query Tree Translator. Given the query tree verified
by the user, the translator utilizes its structure to generate
appropriate structure in the SQL expression and completes
the foreign-key-primary-key (FK-PK) join paths. The result
SQL statement may contain aggregate functions, multi-level
subqueries, and various types of joins, among other things.
Finally, our system evaluates the translated SQL statement
against an RDBMS and returns the query results back to
the user.

4. PARSE TREE NODE INTERPRETATION
To understand the linguistic parse tree from the database’s

perspective, we first need to identify the parse tree nodes
(words/phrases) that can be mapped to SQL components.
Such nodes can be further divided into different types as
shown in Figure 4, according to the type of SQL components

author�

return�

VLDB�after�LDB ftD

 2000�

paper�

Bob�VLLLDLDb

more�

number of�number of�

ROOT�

(d)�

author�h

return�

Bob�

more�

ROOT�

(c)�

VLDB� after�LDB ft

2000�

paper�

00
VLDB�after�DB ftD

2000�

paper�

author�VLDLLDLDth

00

return (SN: SELECT)
author (NN: author)
more (ON: >)
paper (NN: publication)
Bob (VN: author.name)
VLDB (VN: conference.name) �
after (ON: >)
2000 (VN: publication.year) �

(b)�

return�

after�

2000�

author�

VLDB ��LD

ft

ROOT�

more�
(a)�

paper� Bob�

T� M�

TM1� TM11�

Figure 3: (a) A Simplified Linguistic Parse Tree
from the Stanford Parser. (b) A Mapping Strat-
egy for the Nodes in the Parse Tree. (c) A Valid
Parse Tree. (d) A Query Tree after Inserting Im-
plicit Nodes.

���	����	� ����	�����
����������	��

�����#�
����0�
1� ��	���*)�!�.���	����

� �!�#�!�
����0�
1� ���� �!�#�!-��/�/�2-�32-�,2-����#���"�

�'��$���
����0�
1� ������!���$����'��$��-��/�/-�����

����
����0

1� ��!���$���������!��&!��'#�������

���'��
����0�
1� ��(��'��'���!�����&!��'#��

�'��$��!�
����0�
1� �		-��
�-������

	�����
����0	
1� �
�-��-�
���

Figure 4: Different Types of Nodes.

they mapped to. The identification of select node, operator
node, function node, quantifier node and logic node is inde-
pendent of the database being queried. In NaLIR, enumer-
ated sets of phrases are served as the real world “knowledge
base” to identify these five types of nodes.
In contrast, name nodes and value nodes correspond to

the meta-data and data, respectively, which entirely depend
on the database being queried. Often, the words/phrases
specified by the user are not exactly the same as the meta-
data/data in the database. In Section 4.2, we map these
parse tree nodes to the meta-data/data in the database
based on the similarity evaluation between them. Ambi-
guity exists when a parse tree node has multiple candidate
mappings. In such a case, our system returns multiple can-
didate mappings for the user to choose from. In Section 4.3,
we provide strategies to facilitate the user in recognizing the
desired mappings from possibly many candidate mappings.
Before that, in Section 4.1, we define the model we assume
for the rest of the paper.

4.1 Data Model
In this paper, a relation schema is defined as Ri(A

i
1, A

i
2,...,

Ai
ki), which consists of a relation name n(Ri) and a set of

attribute schemas {Ai
j |1 ≤ j ≤ ki}. A relation schema Ri

has one (or a set of) attribute schema as its primary key

76

there are multiple candidate valid parse trees for the query,
we choose the best one as default input for the second step
and report top k of them to the interactive communicator.
In the second step, the chosen (or default) valid parse tree
is analyzed semantically and implicit nodes are inserted to
make it more semantically reasonable. This process is also
under the supervision of the user. After inserting implicit
nodes, we obtain the exact interpretation, represented as a
query tree, for the query.

Interactive Communicator. In case the system possi-
bly misunderstands the user, the interactive communicator
explains how her query is processed. In our system, inter-
active communications are organized in three steps, which
verify the intermediate results in the parse tree node map-
ping, parse tree structure reformulation, and implicit node
insertion, respectively. For each ambiguous part, we gener-
ate a multiple choice selection panel, in which each choice
corresponds to a different interpretation. Each time a user
changes a choice, our system immediately reprocesses all the
ambiguities in later steps.

Example 1. Consider the linguistic parse tree T in Fig-
ure 3(a). In the first step, the parse tree node mapper gener-
ates the best mapping for each node (represented as M and
shown in Figure 3 (b)) and reports to the user that the node
“VLDB” maps to “VLDB conference” and “VLDB Jour-
nal” in the database and that our system has chosen “VLDB
conference” as the default mapping. According to M , in the
second step, the parse tree adjustor reformulates the struc-
ture of T and generates the top k valid parse trees {TM

i }, in
which TM

1 (Figure 3 (c)) is the best. The interactive com-
municator explains each of the k valid parse trees in natural
language for the user to choose from. For example, TM

1 is
explained as “return the authors, where the papers of the au-
thor in VLDB after 2000 is more than Bob”. In the third
step, TM

1 is fully instantiated in the parse tree structure ad-
justor by inserting implicit nodes (shown in Figure 3 (d)).
The result query tree TM

11 is explained to the user as “return
the authors, where the number of papers of the author in
VLDB after 2000 is more than the number of paper of Bob
in VLDB after 2000.”, in which the underline part can be
canceled by the user. When the user changes the mapping
strategy M to M ′, our system will immediately use M ′ to
reprocess the second and third steps. Similarly, if the user
choose TM

i instead of TM
1 as the best valid parse tree, our

system will fully instantiate TM
i in the third step and update

the interactions.

Query Tree Translator. Given the query tree verified
by the user, the translator utilizes its structure to generate
appropriate structure in the SQL expression and completes
the foreign-key-primary-key (FK-PK) join paths. The result
SQL statement may contain aggregate functions, multi-level
subqueries, and various types of joins, among other things.
Finally, our system evaluates the translated SQL statement
against an RDBMS and returns the query results back to
the user.

4. PARSE TREE NODE INTERPRETATION
To understand the linguistic parse tree from the database’s

perspective, we first need to identify the parse tree nodes
(words/phrases) that can be mapped to SQL components.
Such nodes can be further divided into different types as
shown in Figure 4, according to the type of SQL components

author�

return�

VLDB�after�LDB ftD

 2000�

paper�

Bob�VLLLDLDb

more�

number of�number of�

ROOT�

(d)�

author�h

return�

Bob�

more�

ROOT�

(c)�

VLDB� after�LDB ft

2000�

paper�

00
VLDB�after�DB ftD

2000�

paper�

author�VLDLLDLDth

00

return (SN: SELECT)
author (NN: author)
more (ON: >)
paper (NN: publication)
Bob (VN: author.name)
VLDB (VN: conference.name) �
after (ON: >)
2000 (VN: publication.year) �

(b)�

return�

after�

2000�

author�

VLDB ��LD

ft

ROOT�

more�
(a)�

paper� Bob�

T� M�

TM1� TM11�

Figure 3: (a) A Simplified Linguistic Parse Tree
from the Stanford Parser. (b) A Mapping Strat-
egy for the Nodes in the Parse Tree. (c) A Valid
Parse Tree. (d) A Query Tree after Inserting Im-
plicit Nodes.

���	����	� ����	�����
����������	��

�����#�
����0�
1� ��	���*)�!�.���	����

� �!�#�!�
����0�
1� ���� �!�#�!-��/�/�2-�32-�,2-����#���"�

�'��$���
����0�
1� ������!���$����'��$��-��/�/-�����

����
����0

1� ��!���$���������!��&!��'#�������

���'��
����0�
1� ��(��'��'���!�����&!��'#��

�'��$��!�
����0�
1� �		-��
�-������

	�����
����0	
1� �
�-��-�
���

Figure 4: Different Types of Nodes.

they mapped to. The identification of select node, operator
node, function node, quantifier node and logic node is inde-
pendent of the database being queried. In NaLIR, enumer-
ated sets of phrases are served as the real world “knowledge
base” to identify these five types of nodes.
In contrast, name nodes and value nodes correspond to

the meta-data and data, respectively, which entirely depend
on the database being queried. Often, the words/phrases
specified by the user are not exactly the same as the meta-
data/data in the database. In Section 4.2, we map these
parse tree nodes to the meta-data/data in the database
based on the similarity evaluation between them. Ambi-
guity exists when a parse tree node has multiple candidate
mappings. In such a case, our system returns multiple can-
didate mappings for the user to choose from. In Section 4.3,
we provide strategies to facilitate the user in recognizing the
desired mappings from possibly many candidate mappings.
Before that, in Section 4.1, we define the model we assume
for the rest of the paper.

4.1 Data Model
In this paper, a relation schema is defined as Ri(A

i
1, A

i
2,...,

Ai
ki), which consists of a relation name n(Ri) and a set of

attribute schemas {Ai
j |1 ≤ j ≤ ki}. A relation schema Ri

has one (or a set of) attribute schema as its primary key

76

there are multiple candidate valid parse trees for the query,
we choose the best one as default input for the second step
and report top k of them to the interactive communicator.
In the second step, the chosen (or default) valid parse tree
is analyzed semantically and implicit nodes are inserted to
make it more semantically reasonable. This process is also
under the supervision of the user. After inserting implicit
nodes, we obtain the exact interpretation, represented as a
query tree, for the query.

Interactive Communicator. In case the system possi-
bly misunderstands the user, the interactive communicator
explains how her query is processed. In our system, inter-
active communications are organized in three steps, which
verify the intermediate results in the parse tree node map-
ping, parse tree structure reformulation, and implicit node
insertion, respectively. For each ambiguous part, we gener-
ate a multiple choice selection panel, in which each choice
corresponds to a different interpretation. Each time a user
changes a choice, our system immediately reprocesses all the
ambiguities in later steps.

Example 1. Consider the linguistic parse tree T in Fig-
ure 3(a). In the first step, the parse tree node mapper gener-
ates the best mapping for each node (represented as M and
shown in Figure 3 (b)) and reports to the user that the node
“VLDB” maps to “VLDB conference” and “VLDB Jour-
nal” in the database and that our system has chosen “VLDB
conference” as the default mapping. According to M , in the
second step, the parse tree adjustor reformulates the struc-
ture of T and generates the top k valid parse trees {TM

i }, in
which TM

1 (Figure 3 (c)) is the best. The interactive com-
municator explains each of the k valid parse trees in natural
language for the user to choose from. For example, TM

1 is
explained as “return the authors, where the papers of the au-
thor in VLDB after 2000 is more than Bob”. In the third
step, TM

1 is fully instantiated in the parse tree structure ad-
justor by inserting implicit nodes (shown in Figure 3 (d)).
The result query tree TM

11 is explained to the user as “return
the authors, where the number of papers of the author in
VLDB after 2000 is more than the number of paper of Bob
in VLDB after 2000.”, in which the underline part can be
canceled by the user. When the user changes the mapping
strategy M to M ′, our system will immediately use M ′ to
reprocess the second and third steps. Similarly, if the user
choose TM

i instead of TM
1 as the best valid parse tree, our

system will fully instantiate TM
i in the third step and update

the interactions.

Query Tree Translator. Given the query tree verified
by the user, the translator utilizes its structure to generate
appropriate structure in the SQL expression and completes
the foreign-key-primary-key (FK-PK) join paths. The result
SQL statement may contain aggregate functions, multi-level
subqueries, and various types of joins, among other things.
Finally, our system evaluates the translated SQL statement
against an RDBMS and returns the query results back to
the user.

4. PARSE TREE NODE INTERPRETATION
To understand the linguistic parse tree from the database’s

perspective, we first need to identify the parse tree nodes
(words/phrases) that can be mapped to SQL components.
Such nodes can be further divided into different types as
shown in Figure 4, according to the type of SQL components

author�

return�

VLDB�after�LDB ftD

 2000�

paper�

Bob�VLLLDLDb

more�

number of�number of�

ROOT�

(d)�

author�h

return�

Bob�

more�

ROOT�

(c)�

VLDB� after�LDB ft

2000�

paper�

00
VLDB�after�DB ftD

2000�

paper�

author�VLDLLDLDth

00

return (SN: SELECT)
author (NN: author)
more (ON: >)
paper (NN: publication)
Bob (VN: author.name)
VLDB (VN: conference.name) �
after (ON: >)
2000 (VN: publication.year) �

(b)�

return�

after�

2000�

author�

VLDB ��LD

ft

ROOT�

more�
(a)�

paper� Bob�

T� M�

TM1� TM11�

Figure 3: (a) A Simplified Linguistic Parse Tree
from the Stanford Parser. (b) A Mapping Strat-
egy for the Nodes in the Parse Tree. (c) A Valid
Parse Tree. (d) A Query Tree after Inserting Im-
plicit Nodes.

���	����	� ����	�����
����������	��

�����#�
����0�
1� ��	���*)�!�.���	����

� �!�#�!�
����0�
1� ���� �!�#�!-��/�/�2-�32-�,2-����#���"�

�'��$���
����0�
1� ������!���$����'��$��-��/�/-�����

����
����0

1� ��!���$���������!��&!��'#�������

���'��
����0�
1� ��(��'��'���!�����&!��'#��

�'��$��!�
����0�
1� �		-��
�-������

	�����
����0	
1� �
�-��-�
���

Figure 4: Different Types of Nodes.

they mapped to. The identification of select node, operator
node, function node, quantifier node and logic node is inde-
pendent of the database being queried. In NaLIR, enumer-
ated sets of phrases are served as the real world “knowledge
base” to identify these five types of nodes.
In contrast, name nodes and value nodes correspond to

the meta-data and data, respectively, which entirely depend
on the database being queried. Often, the words/phrases
specified by the user are not exactly the same as the meta-
data/data in the database. In Section 4.2, we map these
parse tree nodes to the meta-data/data in the database
based on the similarity evaluation between them. Ambi-
guity exists when a parse tree node has multiple candidate
mappings. In such a case, our system returns multiple can-
didate mappings for the user to choose from. In Section 4.3,
we provide strategies to facilitate the user in recognizing the
desired mappings from possibly many candidate mappings.
Before that, in Section 4.1, we define the model we assume
for the rest of the paper.

4.1 Data Model
In this paper, a relation schema is defined as Ri(A

i
1, A

i
2,...,

Ai
ki), which consists of a relation name n(Ri) and a set of

attribute schemas {Ai
j |1 ≤ j ≤ ki}. A relation schema Ri

has one (or a set of) attribute schema as its primary key

76

there are multiple candidate valid parse trees for the query,
we choose the best one as default input for the second step
and report top k of them to the interactive communicator.
In the second step, the chosen (or default) valid parse tree
is analyzed semantically and implicit nodes are inserted to
make it more semantically reasonable. This process is also
under the supervision of the user. After inserting implicit
nodes, we obtain the exact interpretation, represented as a
query tree, for the query.

Interactive Communicator. In case the system possi-
bly misunderstands the user, the interactive communicator
explains how her query is processed. In our system, inter-
active communications are organized in three steps, which
verify the intermediate results in the parse tree node map-
ping, parse tree structure reformulation, and implicit node
insertion, respectively. For each ambiguous part, we gener-
ate a multiple choice selection panel, in which each choice
corresponds to a different interpretation. Each time a user
changes a choice, our system immediately reprocesses all the
ambiguities in later steps.

Example 1. Consider the linguistic parse tree T in Fig-
ure 3(a). In the first step, the parse tree node mapper gener-
ates the best mapping for each node (represented as M and
shown in Figure 3 (b)) and reports to the user that the node
“VLDB” maps to “VLDB conference” and “VLDB Jour-
nal” in the database and that our system has chosen “VLDB
conference” as the default mapping. According to M , in the
second step, the parse tree adjustor reformulates the struc-
ture of T and generates the top k valid parse trees {TM

i }, in
which TM

1 (Figure 3 (c)) is the best. The interactive com-
municator explains each of the k valid parse trees in natural
language for the user to choose from. For example, TM

1 is
explained as “return the authors, where the papers of the au-
thor in VLDB after 2000 is more than Bob”. In the third
step, TM

1 is fully instantiated in the parse tree structure ad-
justor by inserting implicit nodes (shown in Figure 3 (d)).
The result query tree TM

11 is explained to the user as “return
the authors, where the number of papers of the author in
VLDB after 2000 is more than the number of paper of Bob
in VLDB after 2000.”, in which the underline part can be
canceled by the user. When the user changes the mapping
strategy M to M ′, our system will immediately use M ′ to
reprocess the second and third steps. Similarly, if the user
choose TM

i instead of TM
1 as the best valid parse tree, our

system will fully instantiate TM
i in the third step and update

the interactions.

Query Tree Translator. Given the query tree verified
by the user, the translator utilizes its structure to generate
appropriate structure in the SQL expression and completes
the foreign-key-primary-key (FK-PK) join paths. The result
SQL statement may contain aggregate functions, multi-level
subqueries, and various types of joins, among other things.
Finally, our system evaluates the translated SQL statement
against an RDBMS and returns the query results back to
the user.

4. PARSE TREE NODE INTERPRETATION
To understand the linguistic parse tree from the database’s

perspective, we first need to identify the parse tree nodes
(words/phrases) that can be mapped to SQL components.
Such nodes can be further divided into different types as
shown in Figure 4, according to the type of SQL components

author�

return�

VLDB�after�LDB ftD

 2000�

paper�

Bob�VLLLDLDb

more�

number of�number of�

ROOT�

(d)�

author�h

return�

Bob�

more�

ROOT�

(c)�

VLDB� after�LDB ft

2000�

paper�

00
VLDB�after�DB ftD

2000�

paper�

author�VLDLLDLDth

00

return (SN: SELECT)
author (NN: author)
more (ON: >)
paper (NN: publication)
Bob (VN: author.name)
VLDB (VN: conference.name) �
after (ON: >)
2000 (VN: publication.year) �

(b)�

return�

after�

2000�

author�

VLDB ��LD

ft

ROOT�

more�
(a)�

paper� Bob�

T� M�

TM1� TM11�

Figure 3: (a) A Simplified Linguistic Parse Tree
from the Stanford Parser. (b) A Mapping Strat-
egy for the Nodes in the Parse Tree. (c) A Valid
Parse Tree. (d) A Query Tree after Inserting Im-
plicit Nodes.

���	����	� ����	�����
����������	��

�����#�
����0�
1� ��	���*)�!�.���	����

� �!�#�!�
����0�
1� ���� �!�#�!-��/�/�2-�32-�,2-����#���"�

�'��$���
����0�
1� ������!���$����'��$��-��/�/-�����

����
����0

1� ��!���$���������!��&!��'#�������

���'��
����0�
1� ��(��'��'���!�����&!��'#��

�'��$��!�
����0�
1� �		-��
�-������

	�����
����0	
1� �
�-��-�
���

Figure 4: Different Types of Nodes.

they mapped to. The identification of select node, operator
node, function node, quantifier node and logic node is inde-
pendent of the database being queried. In NaLIR, enumer-
ated sets of phrases are served as the real world “knowledge
base” to identify these five types of nodes.

In contrast, name nodes and value nodes correspond to
the meta-data and data, respectively, which entirely depend
on the database being queried. Often, the words/phrases
specified by the user are not exactly the same as the meta-
data/data in the database. In Section 4.2, we map these
parse tree nodes to the meta-data/data in the database
based on the similarity evaluation between them. Ambi-
guity exists when a parse tree node has multiple candidate
mappings. In such a case, our system returns multiple can-
didate mappings for the user to choose from. In Section 4.3,
we provide strategies to facilitate the user in recognizing the
desired mappings from possibly many candidate mappings.
Before that, in Section 4.1, we define the model we assume
for the rest of the paper.

4.1 Data Model
In this paper, a relation schema is defined as Ri(A

i
1, A

i
2,...,

Ai
ki), which consists of a relation name n(Ri) and a set of

attribute schemas {Ai
j |1 ≤ j ≤ ki}. A relation schema Ri

has one (or a set of) attribute schema as its primary key

76

NaLIR [Li@PVLDB’14] – User Interaction

return authors
who have more

papers than
Bob in VLDB

after 2000

Templar [Baik@ICDE'19]

• From the same group that created NaLIR
• Attempt to decrease user dependency
• Proposes relying on information mined from a query log
• Uses optimization techniques to improve:
• Mapping of words in the NL query to DB elements

• Join path generation

ATHENA [Saha@PVLDB'16]

• Ontology-driven system to
• Enable NL queries over relational DBs
• Developed at IBM
• Two Phases:

• Phase 1: LN Query Interpretation

• Phase 2: Structured query generation

Institutional
Investment

Investment

Investor

is-a

investedIn investedBy

Personal
Investment

is-a

VC
Investment

is-a

type

Transaction

Holding

fo
rC

om
pa

ny

reported_year

reported_year

amount

purchase_year
type

Investor
Company

Investee

Security

Investee
Company

issuedBy

unionOf

Company

LenderBorrower

is-a

is-a is-a is-a
name

fo
rC

om
pa

ny

Funding
Round

unionOf

type

name

Figure 1: Financial Domain Ontology

input NLQ into an OQL query defined over the ontology, and
then translates the OQL query into its corresponding SQL query.

• We provide a novel ontology-driven algorithm that generates a
ranked list of interpretations, and their corresponding OQL queries.

• We describe a novel algorithm to translate the OQL queries into
SQL queries. Our algorithm is able to handle various underlying
physical representations.

• We show the effectiveness of ATHENA using a comprehen-
sive experimental study on three workloads. ATHENA achieves
100% precision on a geographical (GEO) and an academic
(MAS) workload, and 99% precision on a financial (FIN) work-
load. Moreover, ATHENA attains 87.2%, 88.3%, and 88.9% re-
call on the GEO, MAS, and FIN workloads, respectively.

2. SYSTEM OVERVIEW
We now present an overview of ATHENA, and show how an

example NLQ flows through our system.

2.1 Ontology-Driven Architecture
ATHENA employs a Domain Specific Ontology (referred to as

the ontology) to represent a real-world domain and interprets NLQs
using such an ontology. The ontology is expressed in the Web On-
tology Language (OWL2) 1.

In this paper, we will use a financial domain ontology, shown
in Figure 1, to describe our architecture and algorithms. The on-
tology contains the concepts of the domain (e.g., Company) along
with their properties (e.g., name) as well as the relations between
the concepts (e.g., forCompany). Note that Figure 1 shows only a
small portion of a complex, real-world ontology that we use inter-
nally, and in the experiments we present in Section 4. The full
ontology contains 75 concepts, 289 properties and 95 relations.
As shown in Figure 1, the ontology contains hierarchies between
concepts. For example, an InvesteeCompany is a specific type of
Company, and, thus inherits the properties of the Company concept
(e.g, InvesteeCompany.name). The InvesteeCompany is called
a child concept, the Company is called a parent concept, and their
relationship is captured by an is-a arrow (inheritance). Addition-
ally, since Securities and Investee Companies together constitute
the collection of Investees, the Investee is a union concept and
Security and InvesteeCompany are the corresponding member
concepts, and this relationship is represented by the unionOf ar-
rows (membership). Such inheritance and membership relation-
ships are frequently encountered in real-world ontologies.

The data corresponding to the ontology is stored in a Relational

Store (RS). The schema of the RS must capture all the information
that is contained in the ontology, and is generated by an RS designer
1https://www.w3.org/TR/owl2-overview/

Figure 2: System Architecture

during an offline phase. Typically, multiple relational schemata can
conform to the same ontology. For example, the RS designer might
create a denormalized, or a normalized schema, or might generate
materialized views depending on application requirements. Note
that the users of ATHENA are not aware of the relational schema,
but form their NLQs relying solely on the ontology. We only re-
quire that the RS designer provides our system with an Ontology-

to-Database Mapping, which is also generated during an offline
phase, and describes how the ontology elements (concepts, prop-
erties, and relations) are mapped to database objects (e.g., tables,
views, columns, and referential integrity constraints). The map-
ping must satisfy certain requirements which are discussed in Sec-
tion 3.1.3. In this paper, we assume that the data corresponding to a
particular ontology is already loaded in the RS, and the Ontology-
to-Database Mapping is provided by the RS designer.

2.2 Query Flow
We present the overall system architecture in Figure 2. Assume

that the user submits the following NLQ against the ontology pre-
sented in Figure 1: “Show me restricted stock investments in Al-
ibaba since 2012 by investor and year”. As a first step, the NLQ
engine determines which elements of the ontology are referenced
by the query. For example, the token “restricted stock” may refer
to a value of the property type of InstitutionalInvestment or
Holding among others. Similarly, the token “Alibaba” may refer
to the name of a Company, an InvestorCompany, or a Lender. The
NLQ Engine explores all of these options and generates a ranked
list of interpretations conforming to the ontological structure and
semantic constraints. A natural language explanation is also gener-
ated for each such interpretation.

During the query interpretation process, the NLQ Engine re-
lies on an auxiliary service, named the Translation Index (TI).
The TI provides data and metadata indexing for data values stored
in the RS, and for concepts, properties, and relations appearing
in the ontology, respectively. For our example query above, the
NLQ engine would search for the token “Alibaba” in the TI. The
TI captures that “Alibaba” is a data value for the name column
in the Company table in the RS, which based on the Ontology-to-
Database Mapping, maps to the ontology property Company.name
(Figure 1). Note that “Alibaba” maps to multiple ontology ele-
ments (e.g., InvestorCompany or Lender), and the TI captures all
of them. TI provides powerful and flexible matching by using se-
mantic variant generation schemes. Essentially, for the data values
indexed in the TI, we not only index the actual values (e.g., dis-
tinct values appearing in Company.name), but also variants of those
distinct values. We support semantic variant generators (VGs) for
person and company names, among others. For example, given an
input string “Alibaba Inc”, the company name VG produces the fol-

1210

ATHENA [Saha@PVLDB’16] – Fase 1

• Phase 1: NL query Interpretation
• Maps each query word to ontology elements to which it may refer
• Ex: ”Mirian" mapped to Article.Author and Event.Coordinator

• Mapping combinations yield various interpretations of the LN query
• Each combination corresponds to a tree in the ontology graph
• Interpretation Trees or ITree

• Finding these trees is a variation of the Steiner Tree Problem
• An NP-Complete problem

ATHENA [Saha@PVLDB’16] – Example

Show me restricted stock
investments in Alibaba
since 2012 by investor

and year

Domain
Ontology

Institutional
Investment

Investment

Investor

is-a

investedIn investedBy

Personal
Investment

is-a

VC
Investment

is-a

type

Transaction

Holding

fo
rC

om
pa

ny

reported_year

reported_year

amount

purchase_year
type

Investor
Company

Investee

Security

Investee
Company

issuedBy

unionOf

Company

LenderBorrower

is-a

is-a is-a is-a
name

fo
rC

om
pa

ny

Funding
Round

unionOf

type

name

Figure 1: Financial Domain Ontology

input NLQ into an OQL query defined over the ontology, and
then translates the OQL query into its corresponding SQL query.

• We provide a novel ontology-driven algorithm that generates a
ranked list of interpretations, and their corresponding OQL queries.

• We describe a novel algorithm to translate the OQL queries into
SQL queries. Our algorithm is able to handle various underlying
physical representations.

• We show the effectiveness of ATHENA using a comprehen-
sive experimental study on three workloads. ATHENA achieves
100% precision on a geographical (GEO) and an academic
(MAS) workload, and 99% precision on a financial (FIN) work-
load. Moreover, ATHENA attains 87.2%, 88.3%, and 88.9% re-
call on the GEO, MAS, and FIN workloads, respectively.

2. SYSTEM OVERVIEW
We now present an overview of ATHENA, and show how an

example NLQ flows through our system.

2.1 Ontology-Driven Architecture
ATHENA employs a Domain Specific Ontology (referred to as

the ontology) to represent a real-world domain and interprets NLQs
using such an ontology. The ontology is expressed in the Web On-
tology Language (OWL2) 1.

In this paper, we will use a financial domain ontology, shown
in Figure 1, to describe our architecture and algorithms. The on-
tology contains the concepts of the domain (e.g., Company) along
with their properties (e.g., name) as well as the relations between
the concepts (e.g., forCompany). Note that Figure 1 shows only a
small portion of a complex, real-world ontology that we use inter-
nally, and in the experiments we present in Section 4. The full
ontology contains 75 concepts, 289 properties and 95 relations.
As shown in Figure 1, the ontology contains hierarchies between
concepts. For example, an InvesteeCompany is a specific type of
Company, and, thus inherits the properties of the Company concept
(e.g, InvesteeCompany.name). The InvesteeCompany is called
a child concept, the Company is called a parent concept, and their
relationship is captured by an is-a arrow (inheritance). Addition-
ally, since Securities and Investee Companies together constitute
the collection of Investees, the Investee is a union concept and
Security and InvesteeCompany are the corresponding member
concepts, and this relationship is represented by the unionOf ar-
rows (membership). Such inheritance and membership relation-
ships are frequently encountered in real-world ontologies.

The data corresponding to the ontology is stored in a Relational

Store (RS). The schema of the RS must capture all the information
that is contained in the ontology, and is generated by an RS designer
1https://www.w3.org/TR/owl2-overview/

Figure 2: System Architecture

during an offline phase. Typically, multiple relational schemata can
conform to the same ontology. For example, the RS designer might
create a denormalized, or a normalized schema, or might generate
materialized views depending on application requirements. Note
that the users of ATHENA are not aware of the relational schema,
but form their NLQs relying solely on the ontology. We only re-
quire that the RS designer provides our system with an Ontology-

to-Database Mapping, which is also generated during an offline
phase, and describes how the ontology elements (concepts, prop-
erties, and relations) are mapped to database objects (e.g., tables,
views, columns, and referential integrity constraints). The map-
ping must satisfy certain requirements which are discussed in Sec-
tion 3.1.3. In this paper, we assume that the data corresponding to a
particular ontology is already loaded in the RS, and the Ontology-
to-Database Mapping is provided by the RS designer.

2.2 Query Flow
We present the overall system architecture in Figure 2. Assume

that the user submits the following NLQ against the ontology pre-
sented in Figure 1: “Show me restricted stock investments in Al-
ibaba since 2012 by investor and year”. As a first step, the NLQ
engine determines which elements of the ontology are referenced
by the query. For example, the token “restricted stock” may refer
to a value of the property type of InstitutionalInvestment or
Holding among others. Similarly, the token “Alibaba” may refer
to the name of a Company, an InvestorCompany, or a Lender. The
NLQ Engine explores all of these options and generates a ranked
list of interpretations conforming to the ontological structure and
semantic constraints. A natural language explanation is also gener-
ated for each such interpretation.

During the query interpretation process, the NLQ Engine re-
lies on an auxiliary service, named the Translation Index (TI).
The TI provides data and metadata indexing for data values stored
in the RS, and for concepts, properties, and relations appearing
in the ontology, respectively. For our example query above, the
NLQ engine would search for the token “Alibaba” in the TI. The
TI captures that “Alibaba” is a data value for the name column
in the Company table in the RS, which based on the Ontology-to-
Database Mapping, maps to the ontology property Company.name
(Figure 1). Note that “Alibaba” maps to multiple ontology ele-
ments (e.g., InvestorCompany or Lender), and the TI captures all
of them. TI provides powerful and flexible matching by using se-
mantic variant generation schemes. Essentially, for the data values
indexed in the TI, we not only index the actual values (e.g., dis-
tinct values appearing in Company.name), but also variants of those
distinct values. We support semantic variant generators (VGs) for
person and company names, among others. For example, given an
input string “Alibaba Inc”, the company name VG produces the fol-

1210

Institutional
Investment

Investment

Investor

is-a

investedIn investedBy

Personal
Investment

is-a

VC
Investment

is-a

type

Transaction

Holding

fo
rC

om
pa

ny

reported_year

reported_year

amount

purchase_year
type

Investor
Company

Investee

Security

Investee
Company

issuedBy

unionOf

Company

LenderBorrower

is-a

is-a is-a is-a
name

fo
rC

om
pa

ny

Funding
Round

unionOf

type

name

Figure 1: Financial Domain Ontology

input NLQ into an OQL query defined over the ontology, and
then translates the OQL query into its corresponding SQL query.

• We provide a novel ontology-driven algorithm that generates a
ranked list of interpretations, and their corresponding OQL queries.

• We describe a novel algorithm to translate the OQL queries into
SQL queries. Our algorithm is able to handle various underlying
physical representations.

• We show the effectiveness of ATHENA using a comprehen-
sive experimental study on three workloads. ATHENA achieves
100% precision on a geographical (GEO) and an academic
(MAS) workload, and 99% precision on a financial (FIN) work-
load. Moreover, ATHENA attains 87.2%, 88.3%, and 88.9% re-
call on the GEO, MAS, and FIN workloads, respectively.

2. SYSTEM OVERVIEW
We now present an overview of ATHENA, and show how an

example NLQ flows through our system.

2.1 Ontology-Driven Architecture
ATHENA employs a Domain Specific Ontology (referred to as

the ontology) to represent a real-world domain and interprets NLQs
using such an ontology. The ontology is expressed in the Web On-
tology Language (OWL2) 1.

In this paper, we will use a financial domain ontology, shown
in Figure 1, to describe our architecture and algorithms. The on-
tology contains the concepts of the domain (e.g., Company) along
with their properties (e.g., name) as well as the relations between
the concepts (e.g., forCompany). Note that Figure 1 shows only a
small portion of a complex, real-world ontology that we use inter-
nally, and in the experiments we present in Section 4. The full
ontology contains 75 concepts, 289 properties and 95 relations.
As shown in Figure 1, the ontology contains hierarchies between
concepts. For example, an InvesteeCompany is a specific type of
Company, and, thus inherits the properties of the Company concept
(e.g, InvesteeCompany.name). The InvesteeCompany is called
a child concept, the Company is called a parent concept, and their
relationship is captured by an is-a arrow (inheritance). Addition-
ally, since Securities and Investee Companies together constitute
the collection of Investees, the Investee is a union concept and
Security and InvesteeCompany are the corresponding member
concepts, and this relationship is represented by the unionOf ar-
rows (membership). Such inheritance and membership relation-
ships are frequently encountered in real-world ontologies.

The data corresponding to the ontology is stored in a Relational

Store (RS). The schema of the RS must capture all the information
that is contained in the ontology, and is generated by an RS designer
1https://www.w3.org/TR/owl2-overview/

Figure 2: System Architecture

during an offline phase. Typically, multiple relational schemata can
conform to the same ontology. For example, the RS designer might
create a denormalized, or a normalized schema, or might generate
materialized views depending on application requirements. Note
that the users of ATHENA are not aware of the relational schema,
but form their NLQs relying solely on the ontology. We only re-
quire that the RS designer provides our system with an Ontology-

to-Database Mapping, which is also generated during an offline
phase, and describes how the ontology elements (concepts, prop-
erties, and relations) are mapped to database objects (e.g., tables,
views, columns, and referential integrity constraints). The map-
ping must satisfy certain requirements which are discussed in Sec-
tion 3.1.3. In this paper, we assume that the data corresponding to a
particular ontology is already loaded in the RS, and the Ontology-
to-Database Mapping is provided by the RS designer.

2.2 Query Flow
We present the overall system architecture in Figure 2. Assume

that the user submits the following NLQ against the ontology pre-
sented in Figure 1: “Show me restricted stock investments in Al-
ibaba since 2012 by investor and year”. As a first step, the NLQ
engine determines which elements of the ontology are referenced
by the query. For example, the token “restricted stock” may refer
to a value of the property type of InstitutionalInvestment or
Holding among others. Similarly, the token “Alibaba” may refer
to the name of a Company, an InvestorCompany, or a Lender. The
NLQ Engine explores all of these options and generates a ranked
list of interpretations conforming to the ontological structure and
semantic constraints. A natural language explanation is also gener-
ated for each such interpretation.

During the query interpretation process, the NLQ Engine re-
lies on an auxiliary service, named the Translation Index (TI).
The TI provides data and metadata indexing for data values stored
in the RS, and for concepts, properties, and relations appearing
in the ontology, respectively. For our example query above, the
NLQ engine would search for the token “Alibaba” in the TI. The
TI captures that “Alibaba” is a data value for the name column
in the Company table in the RS, which based on the Ontology-to-
Database Mapping, maps to the ontology property Company.name
(Figure 1). Note that “Alibaba” maps to multiple ontology ele-
ments (e.g., InvestorCompany or Lender), and the TI captures all
of them. TI provides powerful and flexible matching by using se-
mantic variant generation schemes. Essentially, for the data values
indexed in the TI, we not only index the actual values (e.g., dis-
tinct values appearing in Company.name), but also variants of those
distinct values. We support semantic variant generators (VGs) for
person and company names, among others. For example, given an
input string “Alibaba Inc”, the company name VG produces the fol-

1210

“Alibaba”

“Investor”

“restricted stock”

“since 2012”

“year”

“in”

ATHENA [Saha@PVLDB’16] – Example (2)

Show me restricted stock
investments in Alibaba
since 2012 by investor

and year

Terminal Nodes

Domain
Ontology

Institutional
Investment

Investment

Investor

is-a

investedIn investedBy

Personal
Investment

is-a

VC
Investment

is-a

type

Transaction

Holding

fo
rC

om
pa

ny

reported_year

reported_year

amount

purchase_year
type

Investor
Company

Investee

Security

Investee
Company

issuedBy

unionOf

Company

LenderBorrower

is-a

is-a is-a is-a
name

fo
rC

om
pa

ny

Funding
Round

unionOf

type

name

Figure 1: Financial Domain Ontology

input NLQ into an OQL query defined over the ontology, and
then translates the OQL query into its corresponding SQL query.

• We provide a novel ontology-driven algorithm that generates a
ranked list of interpretations, and their corresponding OQL queries.

• We describe a novel algorithm to translate the OQL queries into
SQL queries. Our algorithm is able to handle various underlying
physical representations.

• We show the effectiveness of ATHENA using a comprehen-
sive experimental study on three workloads. ATHENA achieves
100% precision on a geographical (GEO) and an academic
(MAS) workload, and 99% precision on a financial (FIN) work-
load. Moreover, ATHENA attains 87.2%, 88.3%, and 88.9% re-
call on the GEO, MAS, and FIN workloads, respectively.

2. SYSTEM OVERVIEW
We now present an overview of ATHENA, and show how an

example NLQ flows through our system.

2.1 Ontology-Driven Architecture
ATHENA employs a Domain Specific Ontology (referred to as

the ontology) to represent a real-world domain and interprets NLQs
using such an ontology. The ontology is expressed in the Web On-
tology Language (OWL2) 1.

In this paper, we will use a financial domain ontology, shown
in Figure 1, to describe our architecture and algorithms. The on-
tology contains the concepts of the domain (e.g., Company) along
with their properties (e.g., name) as well as the relations between
the concepts (e.g., forCompany). Note that Figure 1 shows only a
small portion of a complex, real-world ontology that we use inter-
nally, and in the experiments we present in Section 4. The full
ontology contains 75 concepts, 289 properties and 95 relations.
As shown in Figure 1, the ontology contains hierarchies between
concepts. For example, an InvesteeCompany is a specific type of
Company, and, thus inherits the properties of the Company concept
(e.g, InvesteeCompany.name). The InvesteeCompany is called
a child concept, the Company is called a parent concept, and their
relationship is captured by an is-a arrow (inheritance). Addition-
ally, since Securities and Investee Companies together constitute
the collection of Investees, the Investee is a union concept and
Security and InvesteeCompany are the corresponding member
concepts, and this relationship is represented by the unionOf ar-
rows (membership). Such inheritance and membership relation-
ships are frequently encountered in real-world ontologies.

The data corresponding to the ontology is stored in a Relational

Store (RS). The schema of the RS must capture all the information
that is contained in the ontology, and is generated by an RS designer
1https://www.w3.org/TR/owl2-overview/

Figure 2: System Architecture

during an offline phase. Typically, multiple relational schemata can
conform to the same ontology. For example, the RS designer might
create a denormalized, or a normalized schema, or might generate
materialized views depending on application requirements. Note
that the users of ATHENA are not aware of the relational schema,
but form their NLQs relying solely on the ontology. We only re-
quire that the RS designer provides our system with an Ontology-

to-Database Mapping, which is also generated during an offline
phase, and describes how the ontology elements (concepts, prop-
erties, and relations) are mapped to database objects (e.g., tables,
views, columns, and referential integrity constraints). The map-
ping must satisfy certain requirements which are discussed in Sec-
tion 3.1.3. In this paper, we assume that the data corresponding to a
particular ontology is already loaded in the RS, and the Ontology-
to-Database Mapping is provided by the RS designer.

2.2 Query Flow
We present the overall system architecture in Figure 2. Assume

that the user submits the following NLQ against the ontology pre-
sented in Figure 1: “Show me restricted stock investments in Al-
ibaba since 2012 by investor and year”. As a first step, the NLQ
engine determines which elements of the ontology are referenced
by the query. For example, the token “restricted stock” may refer
to a value of the property type of InstitutionalInvestment or
Holding among others. Similarly, the token “Alibaba” may refer
to the name of a Company, an InvestorCompany, or a Lender. The
NLQ Engine explores all of these options and generates a ranked
list of interpretations conforming to the ontological structure and
semantic constraints. A natural language explanation is also gener-
ated for each such interpretation.

During the query interpretation process, the NLQ Engine re-
lies on an auxiliary service, named the Translation Index (TI).
The TI provides data and metadata indexing for data values stored
in the RS, and for concepts, properties, and relations appearing
in the ontology, respectively. For our example query above, the
NLQ engine would search for the token “Alibaba” in the TI. The
TI captures that “Alibaba” is a data value for the name column
in the Company table in the RS, which based on the Ontology-to-
Database Mapping, maps to the ontology property Company.name
(Figure 1). Note that “Alibaba” maps to multiple ontology ele-
ments (e.g., InvestorCompany or Lender), and the TI captures all
of them. TI provides powerful and flexible matching by using se-
mantic variant generation schemes. Essentially, for the data values
indexed in the TI, we not only index the actual values (e.g., dis-
tinct values appearing in Company.name), but also variants of those
distinct values. We support semantic variant generators (VGs) for
person and company names, among others. For example, given an
input string “Alibaba Inc”, the company name VG produces the fol-

1210

“Alibaba”

“Investor”

“restricted stock”

“since 2012”

“year”

“in”

ATHENA [Saha@PVLDB’16] – Example (3)

Show me restricted stock
investments in Alibaba
since 2012 by investor

and year

Terminal Nodes

Connec5on Nodes (Steiner)

Domain
Ontology

ATHENA [Saha@PVLDB’16] – Fase 2
• Phase 2: Structured Query Generation
• Relies on an Ontology-to-Database Mapping (MDG)
• Describes how elements of the ontology are mapped to the DB elements

• (concepts, property, relationships) => (tables, views, columns, FKs)

• The "best" ITrees transformed into queries according to the MDS

• Ontology Query Language (OQL):

• Intermediate language used to allow logical independence

• Query Translator : OQL to SQL

• Other QLs can be used

• ATHENA provides a ranked list of the queries

• The user can choose the most appropriate

ATHENA++ [Sen@PVLDB'20]

• Extends ATHENA to cover complex nested queries
• The original query is partitioned into possible nested queries,

according to a predefined taxonomy.

the database. In this process, we re-use some of the components
(in grey) introduced in [29], including Translation Index, Domain
Ontology, Ontology to Database Mapping, and Query Translator.
The newly added components for nested query handling are Nested
Query Detector and Nested Query Building.

Ranked OQL Queries

Re
su

lts

Domain
Ontology

Ontology to
Database
Mapping

SQ
L

Q
ue

rie
s

NL Query
Nested Query Detector

User

Nested Query Builder

Query Translator

Relational
Database

Evidence
Annotator

Nested Query Classifier

Evidence Partitioner

Operation
Annotator

Interpretation
Tree Generator

Hierarchical Query Generation

Join Condition
Generator

Translation
Index

Figure 2: System Architecture
We use query Q6 (show me everyone who bought stocks in 2019

that have gone up in value) from Table 1 as a running example to
illustrate the workflow of ATHENA++ in Figure 3.

Evidence Annotator exploits Translation Index (TI) and Do-
main Ontology to map tokens in the query to data instances in the
database, ontology elements, or SQL query clauses (e.g., SELECT,
FROM, and WHERE). For example, the token “stocks” is mapped to
“ListedSecurity” concept in the domain ontology. In addition, it
also annotates the tokens as certain types such as time and number.

Operation Annotator leverages Stanford CoreNLP [24] for to-
kenization and annotating dependencies between tokens in the NL
query. It also identifies linguistic patterns specific to nested queries,
such as aggregation and comparison. The output of Evidence and
Operation Annotators is an Evidence Set ES.

Nested Query Classifier takes as input the evidence set with an-
notations from Evidence and Operation Annotators, and identifies
if the NL query corresponds to one of the nested query types of Ta-
ble 2. In the example of Figure 3, it identifies that the phrase “gone
up” refers to stock value which is compared between the outer and
inner queries, and hence decides that Q6 is a Type-J nested query.

Figure 3: Example Query (Q6) and Evidence Sets
Evidence Partitioner splits a given evidence set into potentially

overlapping partitions by following a set of proposed heuristics
based on linguistic patterns and domain reasoning, to delineate the
inner and outer query blocks. As shown in Figure 3, for query Q6

this results into two evidence sets ES1 and ES2 for the inner query
and the outer query, respectively. ES1 and ES2 are connected by
the detected nested query token “gone up”.

Join Condition Generator consumes a pair of evidence sets
ES1 and ES2, and produces a join condition which can be repre-
sented by a comparison operator Op with two operands from ES1

and ES2, respectively. For example, the join condition for Q6 is
ES1.value > ES2.value.

Interpretation Tree Generator exploits the Steiner Tree-based
algorithm introduced in [29] to return a single interpretation tree
(ITree) for each evidence set produced by the Evidence Partitioner.

Hierarchical Query Generation is responsible for stitching the
interpretation trees together by using the generated join conditions.
In case of arbitrary levels of nesting, the Hierarchical Query Gener-
ation recursively builds the OQL query from the most inner query
to the last outer query.

4. NESTED QUERY DETECTION
4.1 Evidence and Operation Annotators

As motivated in Section 1, the linguistic patterns and domain se-
mantics are critical to the success of nested query detection. To
discover such salient information, we first employ the open source
Stanford CoreNLP [24] to tokenize and parse the input NL query.
Then, for each token t, we introduce Operation Annotators to ex-
tract the linguistic patterns and Evidence Annotators to identify the
domain semantics, respectively.

Evidence Annotator. The evidence annotator associates a token
t with one or more ontology elements including concepts, relation-
ships, and data properties. To identify the ontology elements, we
use Translation Index (TI) shown in Figure 2, which captures the
domain vocabulary, providing data and metadata indexing for data
values, and for concepts, properties, and relations, respectively. For
example, in Q6 the tokens “stocks” and “bought” are mapped to
the concept “ListedSecurity” and the property “Transaction.type”,
respectively, in the ontology shown in Figure 1. Alternative se-
mantic similarity-based methods such as word embedding or edit
distance can be utilized as well to increase matching recall, with a
potential loss in precision.

The Evidence Annotator also annotates tokens that indicate time
ranges (e.g., “in 2019” in Q6) and then associates them with the
ontology properties (e.g., “Transaction.time”) whose correspond-
ing data type is time-related (e.g., Date). Similarly, the Evidence
Annotator annotates tokens that mention numeric quantities, either
in the form of numbers or in text, and subsequently matches them
to ontology properties with numerical data types (e.g., Double).
Finally, the Evidence Annotator further annotates certain identi-
fied Entity tokens that are specific to the SELECT clause of the
outer SQL query, using POS tagging and dependency parsing from
Stanford CoreNLP. Such entities are referred to as Focus Entities,
as they represent what users want to see as the result of their NL
queries. Table 3 lists several examples of the Evidence and Opera-
tion Annotators (separated by double lines). We also use other an-
notators for detecting various SQL query clauses such as GROUPBY
and ORDERBY. These are orthogonal to nested query detection and
translation, and hence we do not include them in Table 3.

Operation Annotator. The Operation Annotator assigns op-
eration types to the tokens, when applicable. As shown in Ta-
ble 3, our Operation Annotator primarily targets four linguistic
patterns: count, aggregation, comparison, and negation. We dis-
tinguish count from other aggregation functions as it also applies
to non-numeric data. A few representative examples of tokens
corresponding to each annotation type are also presented in Ta-
ble 3. Additionally, the Operation Annotator also leverages Stan-
ford CoreNLP [24] for annotating dependencies between tokens in
the NL query. The produced dependent tokens are then used in the
nested query classification.

Note that each token can be associated with multiple annotations
from both Evidence and Operation Annotators. For example, “ev-

2750

the database. In this process, we re-use some of the components
(in grey) introduced in [29], including Translation Index, Domain
Ontology, Ontology to Database Mapping, and Query Translator.
The newly added components for nested query handling are Nested
Query Detector and Nested Query Building.

Ranked OQL Queries

Re
su

lts

Domain
Ontology

Ontology to
Database
Mapping

SQ
L

Q
ue

rie
s

NL Query
Nested Query Detector

User

Nested Query Builder

Query Translator

Relational
Database

Evidence
Annotator

Nested Query Classifier

Evidence Partitioner

Operation
Annotator

Interpretation
Tree Generator

Hierarchical Query Generation

Join Condition
Generator

Translation
Index

Figure 2: System Architecture
We use query Q6 (show me everyone who bought stocks in 2019

that have gone up in value) from Table 1 as a running example to
illustrate the workflow of ATHENA++ in Figure 3.

Evidence Annotator exploits Translation Index (TI) and Do-
main Ontology to map tokens in the query to data instances in the
database, ontology elements, or SQL query clauses (e.g., SELECT,
FROM, and WHERE). For example, the token “stocks” is mapped to
“ListedSecurity” concept in the domain ontology. In addition, it
also annotates the tokens as certain types such as time and number.

Operation Annotator leverages Stanford CoreNLP [24] for to-
kenization and annotating dependencies between tokens in the NL
query. It also identifies linguistic patterns specific to nested queries,
such as aggregation and comparison. The output of Evidence and
Operation Annotators is an Evidence Set ES.

Nested Query Classifier takes as input the evidence set with an-
notations from Evidence and Operation Annotators, and identifies
if the NL query corresponds to one of the nested query types of Ta-
ble 2. In the example of Figure 3, it identifies that the phrase “gone
up” refers to stock value which is compared between the outer and
inner queries, and hence decides that Q6 is a Type-J nested query.

Figure 3: Example Query (Q6) and Evidence Sets
Evidence Partitioner splits a given evidence set into potentially

overlapping partitions by following a set of proposed heuristics
based on linguistic patterns and domain reasoning, to delineate the
inner and outer query blocks. As shown in Figure 3, for query Q6

this results into two evidence sets ES1 and ES2 for the inner query
and the outer query, respectively. ES1 and ES2 are connected by
the detected nested query token “gone up”.

Join Condition Generator consumes a pair of evidence sets
ES1 and ES2, and produces a join condition which can be repre-
sented by a comparison operator Op with two operands from ES1

and ES2, respectively. For example, the join condition for Q6 is
ES1.value > ES2.value.

Interpretation Tree Generator exploits the Steiner Tree-based
algorithm introduced in [29] to return a single interpretation tree
(ITree) for each evidence set produced by the Evidence Partitioner.

Hierarchical Query Generation is responsible for stitching the
interpretation trees together by using the generated join conditions.
In case of arbitrary levels of nesting, the Hierarchical Query Gener-
ation recursively builds the OQL query from the most inner query
to the last outer query.

4. NESTED QUERY DETECTION
4.1 Evidence and Operation Annotators

As motivated in Section 1, the linguistic patterns and domain se-
mantics are critical to the success of nested query detection. To
discover such salient information, we first employ the open source
Stanford CoreNLP [24] to tokenize and parse the input NL query.
Then, for each token t, we introduce Operation Annotators to ex-
tract the linguistic patterns and Evidence Annotators to identify the
domain semantics, respectively.

Evidence Annotator. The evidence annotator associates a token
t with one or more ontology elements including concepts, relation-
ships, and data properties. To identify the ontology elements, we
use Translation Index (TI) shown in Figure 2, which captures the
domain vocabulary, providing data and metadata indexing for data
values, and for concepts, properties, and relations, respectively. For
example, in Q6 the tokens “stocks” and “bought” are mapped to
the concept “ListedSecurity” and the property “Transaction.type”,
respectively, in the ontology shown in Figure 1. Alternative se-
mantic similarity-based methods such as word embedding or edit
distance can be utilized as well to increase matching recall, with a
potential loss in precision.

The Evidence Annotator also annotates tokens that indicate time
ranges (e.g., “in 2019” in Q6) and then associates them with the
ontology properties (e.g., “Transaction.time”) whose correspond-
ing data type is time-related (e.g., Date). Similarly, the Evidence
Annotator annotates tokens that mention numeric quantities, either
in the form of numbers or in text, and subsequently matches them
to ontology properties with numerical data types (e.g., Double).
Finally, the Evidence Annotator further annotates certain identi-
fied Entity tokens that are specific to the SELECT clause of the
outer SQL query, using POS tagging and dependency parsing from
Stanford CoreNLP. Such entities are referred to as Focus Entities,
as they represent what users want to see as the result of their NL
queries. Table 3 lists several examples of the Evidence and Opera-
tion Annotators (separated by double lines). We also use other an-
notators for detecting various SQL query clauses such as GROUPBY
and ORDERBY. These are orthogonal to nested query detection and
translation, and hence we do not include them in Table 3.

Operation Annotator. The Operation Annotator assigns op-
eration types to the tokens, when applicable. As shown in Ta-
ble 3, our Operation Annotator primarily targets four linguistic
patterns: count, aggregation, comparison, and negation. We dis-
tinguish count from other aggregation functions as it also applies
to non-numeric data. A few representative examples of tokens
corresponding to each annotation type are also presented in Ta-
ble 3. Additionally, the Operation Annotator also leverages Stan-
ford CoreNLP [24] for annotating dependencies between tokens in
the NL query. The produced dependent tokens are then used in the
nested query classification.

Note that each token can be associated with multiple annotations
from both Evidence and Operation Annotators. For example, “ev-

2750

Language-Centric Systems (LCS)

Language-Centric Systems (LCS)

• Emerged mainly from the NLP community
• Main advantage: rely on machine learning instead of fixed rules

• E.g., trained to recognize: “major ci@es” => “city.popula@on > 150,000”

• Explore state-of-the-art Deep Learning techniques
• Specifically: sequence conversion method - Seq2Seq
• Challenge: Training

• Needed for each target database

• May involve queries and instances

• Some@mes costly and error-prone

Sequence-to-Sequence Models (Seq2Seq)

• A Neural Network Model
• Transforms a sequence of elements into another sequence of elements
• Includes two networks: an Encoder (COD) and a Decoder (DEC)
• COD: takes an input sequence and maps to an n-dimensional vector
• DEC: takes the vector and transforms it into an output sequence.
• Most typical application example is machine translation

Coder (COD) and Decoder (DEC)

• Imagine COD and DEC as translators, each one speaking two languages.
• The first language is the mother tongue, which differs between the two
• For example, Portuguese and French
• The second is an imaginary language that the two speak

• This correspond to the n-dimensional vector

• To translate Portuguese into French
• The COD converts a Portuguese phrase into the imaginary language

• As the DEC is able to read the imaginary language, it can translate the phrase into

French.

Coder (COD) and Decoder (DEC) (2)

• Suppose that, iniVally, neither COD nor DEC are very fluent in the
imaginary language.
• So that they can learn, we train them with several examples
• This corresponds to the model training

• Usually implemented with Recurrent Neural Networks (RNN)
• AlternaVves: LSTMs, Bi-LSTMs, GRU, transformers, ...
• Stacked nets can be used.
• Top-layer output states are the final representaVon

Encoder-Decoder Networks

4 CHAPTER 10 • ENCODER-DECODER MODELS, ATTENTION AND CONTEXTUAL EMBEDDINGS

10.2 Encoder-Decoder Networks

Fig. 10.3 abstracts away from the specifics of machine translation and illustrates a
basic encoder-decoder architecture. The elements of the network on the left pro-encoder-

decoder
cess the input sequence and comprise the encoder, the entire purpose of which is to
generate a contextualized representation of the input. In this network, this represen-
tation is embodied in the final hidden state of the encoder, hn, which in turn feeds
into the first hidden state of the decoder. The decoder network on the right takes
this state and autoregressively generates a sequence of outputs.

y1 y2 y3 ym

Encoder

xnx2x1

Decoder

hn

…

… …

…

Figure 10.3 Basic RNN-based encoder-decoder architecture. The final hidden state of the encoder RNN
serves as the context for the decoder in its role as h0 in the decoder RNN.

This basic architecture is consistent with the original applications of neural mod-
els to machine translation. However, it embodies a number of design choices that
are less than optimal. Among the major ones are that the encoder and the decoder
are assumed to have the same internal structure (RNNs in this case), that the final
state of the encoder is the only context available to the decoder, and finally that
this context is only available to the decoder as its initial hidden state. Abstracting
away from these choices, we can say that encoder-decoder networks consist of three
components:

1. An encoder that accepts an input sequence, xn
1, and generates a corresponding

sequence of contextualized representations, hn
1.

2. A context vector, c, which is a function of hn
1, and conveys the essence of the

input to the decoder.
3. And a decoder, which accepts c as input and generates an arbitrary length

sequence of hidden states hm
1 , from which a corresponding sequence of output

states ym
1 , can be obtained.

Fig. 10.4 illustrates this abstracted architecture. Let’s now explore some of the pos-
sibilities for each of the components.

Input
Sequence

Output
Sequence

n-dimensional
vector

Jurafsky & Martin, 2019

Word Embeddings
• Neural models manipulate vectors
• In the case of text, embeddings are vectors that represent words

• They can also represent sentences, documents, and even attributes of a table!

• In the case of words: word embeddings – semantics inferred from context
• Example:

• Predict the following word given a prefix:
• ”When I got home, I forgot to feed the _____ "

• Suppose we see the following training sentence:
• " When I get home, I have to remember to feed the cat"

• A traditional model can predict "cat" but not "dog"
• A neural model can assign high probability also to "dog”
• Considering that "cat" and "dog" have similar embeddings

Pre-training and Word Embeddings
• Models assume the existence of previously generated embeddings for a

large set of words.
• In many cases, the embeddings obtained with methods such as

word2vec are sufficient to get good results.
• There many more recent and powerful methods
• The process of generating word embeddings and its properties are itself

a subject worth discussing.

Distributional Hypothesis & Vector Semantics

• Distributional Hypothesis (HD)
• Words with similar meanings tend to occur in similar contexts.

• Formulated in the 1950’s by several linguists

• Vector Semantics
• Instantiates the HD, creating representations of the meaning of words, called

embeddings, from their distributions in a corpus.

• Used in NLP applications to exploit word semantics

• Base for more powerful word representation (e.g., ELMo and BERT)

• Representation Learning: embeddings can be learned automatically
from input texts

Distributional Hypothesis - Example
• What is Jambú ?
• The word was seen in the following contexts:

• ”Jambú is delicious sautéed with garlic"

• ”Jambú is excellent on rice"

• "... Jambú leaves with salty sauces..."

• Some of the words in the above texts were seen in
contexts such as:
• "... spinach sautéed with garlic over rice ..."

• "... chard stems and leaves are delicious..."

• "... collard greens and other salted vegetables..."

Adapted from Jurafsky & Martin, 2019

Distributional Hypothesis - Example
• What is Jambú ?
• The word was seen in the following contexts:
• ”Jambú is delicious sautéed with garlic"

• ”Jambú is excellent on rice"

• "... Jambú leaves with salty sauces..."

• Some of the words in the above texts were seen in
contexts such as:
• "... spinach sautéed with garlic over rice ..."

• "... chard stems and leaves are delicious..."

• "... collard greens and other salted vegetables..."

Adapted from Jurafsky & Martin, 2019

Vector Semantics

• Words represented as vectors or embedding in a multidimensional
semantic space
• Allows to estimate the similarity between words (or sentences).
• Combines two intuitions: Distributional Hypothesis and

representation of words as numerical vectors.
• There are several versions of vector semantics, each one defining the

elements of the vectors in slightly different ways.
• In general, all of them are based on some form of weighted count of

neighbor words

Word Embeddings Examples

Reproduced from Xun et al. KDD '17

2D projection of embeddings
for a few words.

.

Words with similar seman?cs
are close in space

The close words are not
necessarily syntactically

"similar"

Word2Vec

• Algorithm Skip-gram with negative Sampling [Mikolov@NIPS'13]
• Method for generating short and dense embeddings
• Including in the word2vec package and therefore is commonly called

word2vec.
• Fast, efficient for training.
• Available online with code and pre-trained embeddings.
• Other popular methods:

• GloVe [Pennington@EMNLP’14] e fastText [Bojanowski@TACL'17]

Word2Vec – Intuition
• Instead of counting how often each word occurs next to a word w, train a

binary classifier to calculate the probability of words occurring near w.
• The embedding is formed from the weights of the learned classifiers.
• Revolutionary intuition: we can use the current text as an implicitly

unsupervised training corpus for this classifier;

• A word v occurring near w acts as a positive example.
• Avoids the need for any type of manual labeling
• Proposed in the context of neural language models [Collobert@JMLR'11]

Language-Centered System (LCS)

• Use pre-trained embeddings to encode and represent:
• Queries in Natural Language

• Database schemas

• Database Instances - all tuples with attribute values

• SQL query generated using Seq2Seq models
• All current systems are supervised
• Many consider that the DB contains a single table

LCS – Benchmarks

• Many LCS are focused on a specific benchmark

Benchmark DBs and Tables Queries Systems

WikiSQL
[Zhong@CoRR’17]

https://github.com/salesforce/WikiSQL

26,531 tables
extracted from

Wikipedia
HTML tables

80,654 <NL,SQL> pairs
No joins

Labeled with Mec.Turk

Seq2SQL [Zhong@CoRR'17]
SQLNet [Xu@CoRR’17]

Coarse2Fine [Lapata@ACL'18]
STAMP [Zhou@ACL’18]

PT-MAML [Huang@NAACL-HLT’18]
TypeSQL[Yu@NAACL-HLT'18]

Spider
[Yu@EMNLP’18]

https://yale-lily.github.io//spider
200 DBs

128 domains
~5 tables/DB

10.181 NL and 5.693
SQL Include Joins

Labeled by 11 Grads

SyntaxSQLNet [Yu@EMNLP’18]
GNN [Guo@ACL'19]

IRNet [Bogin@ACL'19]

Seq2SQL [Zhong@CoRR'17]
• Developed at Salesforce Research
• Introduces WikiSQL Benchmark - used for training and testing
• Takes advantage of the inherent structure of SQL queries

• Encodes the NL query and a target table

• Predicts each part of the SQL query separately

NL Query

Table Scheme

SQL Query

Seq2Seq Models

Seq2SQL [Zhong@CoRR’17] – Inference
• Aggregation operations

• An RNN encodes NL query
• 4 possible outputs:

• COUNT, MIN, MAX or NONE

• Columns in SELECT (Projections)
• An RNN encodes combinations of the query

and each column

• WHERE Clause (Selection Predicates)
• An RNN encodes the query, each column

and subset of the SQL vocabulary
• Pointer Network: Output Vocabulary is made

up of input words

• Does not support joins

Seq2SQL [Zhong@CoRR’17] – Training

• Given the columns of the table, for each NL query, generates a
candidate SQL query that runs on the DB
• The result of the execution is used as a reward to train a

reinforcement learning algorithm

Predicted results

Question, schema Ground truth results

Seq2SQL

Reward

Generated SQL

Database

Figure 1: Seq2SQL takes as input a question and the columns of a table. It generates the cor-
responding SQL query, which, during training, is executed against a database. The result of the
execution is utilized as the reward to train the reinforcement learning algorithm.

……… ……

Wilfrid Laurier

California

York

York

College

Frank Hoffman30 Toronto Argonauts DL

Calgary Stampeders

L.P. Ladouceur

28

Player

29 Ottawa Renegades

CFL Team

27 DB

DT

Connor HealyHamilton Tiger-Cats

Anthony Forgone

Pick #

OL

Position
Table: CFLDraft Question:

How many CFL teams are from York College?

SELECT COUNT CFL Team FROM
CFLDraft WHERE College = “York”

SQL:

2
Result:

Figure 2: An example in WikiSQL. The inputs consist of a table and a question. The outputs consist
of a ground truth SQL query and the corresponding result from execution.

& Lapata (2016), which obtains 35.9% execution accuracy, as well as an augmented pointer net-
work baseline, which obtains 53.3% execution accuracy. By leveraging the inherent structure of
SQL queries and applying policy gradient methods using reward signals from live query execution,
Seq2SQL achieves state-of-the-art performance on WikiSQL, obtaining 59.4% execution accuracy.

2 MODEL

The WikiSQL task is to generate a SQL query from a natural language question and table schema.
Our baseline model is the attentional sequence to sequence neural semantic parser proposed by Dong
& Lapata (2016) that achieves state-of-the-art performance on a host of semantic parsing datasets
without using hand-engineered grammar. However, the output space of the softmax in their Seq2Seq
model is unnecessarily large for this task. In particular, we can limit the output space of the generated
sequence to the union of the table schema, question utterance, and SQL key words. The resulting
model is similar to a pointer network (Vinyals et al., 2015) with augmented inputs. We first describe
the augmented pointer network model, then address its limitations in our definition of Seq2SQL,
particularly with respect to generating unordered query conditions.

2.1 AUGMENTED POINTER NETWORK

The augmented pointer network generates the SQL query token-by-token by selecting from an input
sequence. In our case, the input sequence is the concatenation of the column names, required for the
selection column and the condition columns of the query, the question, required for the conditions
of the query, and the limited vocabulary of the SQL language such as SELECT, COUNT etc. In
the example shown in Figure 2, the column name tokens consist of “Pick”, “#”, “CFL”, “Team”
etc.; the question tokens consist of “How”, “many”, “CFL”, “teams” etc.; the SQL tokens consist of
SELECT, WHERE, COUNT, MIN, MAX etc. With this augmented input sequence, the pointer network
can produce the SQL query by selecting exclusively from the input.

Suppose we have a list of N table columns and a question such as in Figure 2, and want to produce
the corresponding SQL query. Let xc

j = [xc
j,1, x

c
j,2, ...x

c
j,Tj

] denote the sequence of words in the
name of the jth column, where xc

j,i represents the ith word in the jth column and Tj represents the
total number of words in the jth column. Similarly, let xq and xs respectively denote the sequence
of words in the question and the set of unique words in the SQL vocabulary.

2

Seq2SQL [Zhong@CoRR’17] – Training (2)

How to Talk to Your Database, by Victor Zhong (https://blog.einstein.ai/how-to-talk-to-your-database/

Seq2SQL [Zhong@CoRR’17] – Similar Systems

• Many other similar systems also encode the DB at the input and
decode the output using pointer networks
• Some also assume a SQL (Slot-Filling) template:

• SQLNet [Xu@CoRR'17], Coarse2Fine [Lapata@ACL’18]

• TypeSQL[Yu@NAACL-HLT'18]

• Others decode the SQL query as a sequence of words
• STAMP [Zhou@ACL’18], PT-MAML [Huang@NAACL-HLT’18]

• Others decode the SQL query into a syntax tree
• IRL [Bogin@ACL'19], GNN [Guo@ACL'19], SyntaxeSQLNet [Yu@EMNLP'18]

DBPal [Weir@SIGMOD’20]

• Johns Hopkins Univ. ,TU Darmstadt e Brown Univ.
• Seq2Seq + attention mechanisms
• Focus on using a limited volume of training data
• Generates synthetic training examples
• Technique known in ML as data augmentation

• Uses templates and paraphrase

• Improves overall translation precision
• Increases robustness to language variations

DBPal [Weir@SIGMOD’20]
• Output Vocabulary

• Schema elements in output vocabulary, not input

• This vocabulary also includes SQL keywords and constant values

• Narrower vocabulary than usual in Seq2Seq: reduces complexity
• DEC: Chooses words from this vocabulary to generate the SQL query as the

resulting sequence

• Consequences
• Model specializes in target BD

• Can only process a query if it contains vocabulary words

• Model needs to be trained for each new database

DBPal [Weir@SIGMOD’20] – Training

• Relies on multiple SQL query
templates
• For each template, there is 1 or

more NL templates
• Training generator:
• Instantiate NL templates with

schema elements.

• NL slots filled with words/phrases

from a manually constructed

dictionary.

6FKHPD

64/�1/�SDLUV�
WHPSODWHV

6ORW�ILOO�
OH[LFRQV

*HQHUDWRU

$XJPHQWDWLRQ

1HXUDO�7UDQVODWRU

'%06

1/�4XHU\

3DUDPHWHU�
+DQGOHU

5XQWLPH�SKDVH7UDLQLQJ�SKDVH

/HPPDWL]HU

/HPPDWL]HU

3RVW�SURFHVVRU

*HQHUDWHG�WUDLQLQJ�VHW�

³:KDW�DUH�FLWLHV�ZKRVH�VWDWH�LV�
0DVVDFKXVHWWV"´
6(/(&7�QDPH�)520�FLWLHV�
:+(5(�VWDWH� �µ0DVVDFKXVHWWV¶

³6KRZ�PH�DYHUDJH�SRSXODWLRQ�
RI�FLWLHV�IRU�HDFK�VWDWH´
6(/(&7�VWDWH��$9*�SRSXODWLRQ��
)520�FLWLHV�*5283�%<�VWDWH

«���

Figure 2: DBP��’s Training and Runtime Phases

data produced by our Generator in order to o�er more accu-
rate and linguistically robust translations. During augmenta-
tion, the training data generation pipeline automatically adds
new NL-SQL pairs by leveraging existing general-purpose
data sources and models to linguistically vary the NL part
of each pair. The goal of the augmentation phase is thus to
cover a wide spectrum of linguistic variations for the same
SQL query, which represent di�erent versions of how users
might phrase the query in NL. This augmentation is the key
to make the translation model robust and allows DBP�� to
provide better query understanding capabilities than exist-
ing standalone approaches. Section 3.2 describes this process
in more detail.

2.2.3 Lemmatization. Finally, in the last step of the data
generation procedure, the resulting NL-SQL pairs are lem-
matized to normalize the representation of individual words.
During this process, di�erent forms of the same word are
mapped to the word’s root in order to simplify the analysis
(e.g., “cars” and “car’s” are replaced with “car”). The same
lemmatization is applied at runtime during the aforemen-
tioned pre-processing step.

3 TRAINING PHASE
In this section, we describe DBP��, our fully pluggable train-
ing data generation pipeline, which is designed to improve

the translation accuracy and linguistic robustness of existing
NL2SQL deep learning models. After describing the steps
of our training pipeline in detail, we discuss an optimiza-
tion procedure of the data generation process to increase the
model quality via parameter tuning. Finally, we elaborate on
the model training process, including a description of the
details of the model architecture and the hyperparameters
used in training.

3.1 Data Instantiation
The main observation of the instantiation step is that SQL, as
opposed to NL, has signi�cantly less expressivity. We there-
fore use query templates to instantiate di�erent possible SQL
queries that a user might phrase against a given database
schema, such as:

Select {A�ribute}(s) From {Table}Where {Filter}

The main idea of data instantiation is that the space of
possible SQL queries a user might phrase against a given
database schema can be de�ned using a set of SQL templates.
The SQL templates cover a variety of query types, from sim-
ple SELECT-FROM-WHERE queries to more complex group-by
aggregation queries, as well as some simple nested queries.
For each SQL template, we de�ne one or more NL templates
as counterparts for direct translation, such as:

{SelectPhrase} {A�ribute}(s) {FromPhrase} {Table}(s)
{WherePhrase} {Filter}

It is important to note that we do not use actual constants
in the �lter predicates. Instead, we use placeholders (e.g.,
@AGE) that represent an arbitrary constant for a given table
attribute. This makes the model trained on the generated
data independent of concrete values used in the database;
thus retraining is not required after inserts or updates.
To account for the expressivity of NL compared to SQL,

our templates contain slots for speech variation (e.g., Select-
Phrase, FromPhrase, WherePhrase) in addition to slots for
database objects (e.g., tables, attributes). Then, to instantiate
the initial training set, the Generator repeatedly instantiates
each of our NL templates by �lling in the corresponding slots.
Table, column, and �lter slots are �lled using information
from the database’s schema, while a diverse array of NL slots
are �lled using manually crafted dictionaries of synonymous
words and phrases. For example, the phrases “what is” or
“show me” can be used to instantiate the SelectPhrase. A fully
instantiated NL-SQL pair might look like:

Table, column, and �lter slots are �lled using information
from the database’s schema, while a diverse array of natural
language slots are �lled using manually crafted dictionaries
of synonymous words and phrases. For example, the phrases

Research 26: Usability and Natural Language User Interfaces SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2350

DBPal [Weir@SIGMOD’20] – Training (2)

• Example Template
• SQL: SELECT {Att}(s) FROM {Table} WHERE {Filter}

• LN: {SelectPhrase} the {Att}(s) {FromPhrase} {Table}(s) {WherePhrase} {Filter}

• Exemple of an instantiated template
• SQL: SELECT name FROM patient WHERE age=20

• LN: Show me the name of all patients with age 20

• Currently, there are about 100 templates
• Typical training sets

• DBs with a single table: ~1 MM <NL,SQL> template pairs

• DBs with more tables: ~2 to 3 MM <NL,SQL> template pairs

DBPal [Weir@SIGMOD’20] – Training (3)
• Augmentation: Generation of synthetic pairs

• Goal: covering a broad spectrum of linguistic

variations for the same SQL query.

• Add pairs <NL,SQL> with linguistic variations in NL

• Words and subphrases randomly exchanged in NL

queries, using paraphrases provided by the

Paraphrase Database (PPDB)

• Show patients names with age @AGE => Display
patients names with age @AGE.

• Lemmatization: normalize words in <LN, SQL>

• E.g.: "cars" and "car's" replaced by "car"

• Also applied in run time

6FKHPD

64/�1/�SDLUV�
WHPSODWHV

6ORW�ILOO�
OH[LFRQV

*HQHUDWRU

$XJPHQWDWLRQ

1HXUDO�7UDQVODWRU

'%06

1/�4XHU\

3DUDPHWHU�
+DQGOHU

5XQWLPH�SKDVH7UDLQLQJ�SKDVH

/HPPDWL]HU

/HPPDWL]HU

3RVW�SURFHVVRU

*HQHUDWHG�WUDLQLQJ�VHW�

³:KDW�DUH�FLWLHV�ZKRVH�VWDWH�LV�
0DVVDFKXVHWWV"´
6(/(&7�QDPH�)520�FLWLHV�
:+(5(�VWDWH� �µ0DVVDFKXVHWWV¶

³6KRZ�PH�DYHUDJH�SRSXODWLRQ�
RI�FLWLHV�IRU�HDFK�VWDWH´
6(/(&7�VWDWH��$9*�SRSXODWLRQ��
)520�FLWLHV�*5283�%<�VWDWH

«���

Figure 2: DBP��’s Training and Runtime Phases

data produced by our Generator in order to o�er more accu-
rate and linguistically robust translations. During augmenta-
tion, the training data generation pipeline automatically adds
new NL-SQL pairs by leveraging existing general-purpose
data sources and models to linguistically vary the NL part
of each pair. The goal of the augmentation phase is thus to
cover a wide spectrum of linguistic variations for the same
SQL query, which represent di�erent versions of how users
might phrase the query in NL. This augmentation is the key
to make the translation model robust and allows DBP�� to
provide better query understanding capabilities than exist-
ing standalone approaches. Section 3.2 describes this process
in more detail.

2.2.3 Lemmatization. Finally, in the last step of the data
generation procedure, the resulting NL-SQL pairs are lem-
matized to normalize the representation of individual words.
During this process, di�erent forms of the same word are
mapped to the word’s root in order to simplify the analysis
(e.g., “cars” and “car’s” are replaced with “car”). The same
lemmatization is applied at runtime during the aforemen-
tioned pre-processing step.

3 TRAINING PHASE
In this section, we describe DBP��, our fully pluggable train-
ing data generation pipeline, which is designed to improve

the translation accuracy and linguistic robustness of existing
NL2SQL deep learning models. After describing the steps
of our training pipeline in detail, we discuss an optimiza-
tion procedure of the data generation process to increase the
model quality via parameter tuning. Finally, we elaborate on
the model training process, including a description of the
details of the model architecture and the hyperparameters
used in training.

3.1 Data Instantiation
The main observation of the instantiation step is that SQL, as
opposed to NL, has signi�cantly less expressivity. We there-
fore use query templates to instantiate di�erent possible SQL
queries that a user might phrase against a given database
schema, such as:

Select {A�ribute}(s) From {Table}Where {Filter}

The main idea of data instantiation is that the space of
possible SQL queries a user might phrase against a given
database schema can be de�ned using a set of SQL templates.
The SQL templates cover a variety of query types, from sim-
ple SELECT-FROM-WHERE queries to more complex group-by
aggregation queries, as well as some simple nested queries.
For each SQL template, we de�ne one or more NL templates
as counterparts for direct translation, such as:

{SelectPhrase} {A�ribute}(s) {FromPhrase} {Table}(s)
{WherePhrase} {Filter}

It is important to note that we do not use actual constants
in the �lter predicates. Instead, we use placeholders (e.g.,
@AGE) that represent an arbitrary constant for a given table
attribute. This makes the model trained on the generated
data independent of concrete values used in the database;
thus retraining is not required after inserts or updates.
To account for the expressivity of NL compared to SQL,

our templates contain slots for speech variation (e.g., Select-
Phrase, FromPhrase, WherePhrase) in addition to slots for
database objects (e.g., tables, attributes). Then, to instantiate
the initial training set, the Generator repeatedly instantiates
each of our NL templates by �lling in the corresponding slots.
Table, column, and �lter slots are �lled using information
from the database’s schema, while a diverse array of NL slots
are �lled using manually crafted dictionaries of synonymous
words and phrases. For example, the phrases “what is” or
“show me” can be used to instantiate the SelectPhrase. A fully
instantiated NL-SQL pair might look like:

Table, column, and �lter slots are �lled using information
from the database’s schema, while a diverse array of natural
language slots are �lled using manually crafted dictionaries
of synonymous words and phrases. For example, the phrases

Research 26: Usability and Natural Language User Interfaces SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2350

DBPal [Weir@SIGMOD’20] – Execution

• Neural Translator: translates the query

• Outcome from training.

• Query constants replaced by markers
(placeholders)

• Makes the query independent from the DB
state used in the training.

• Then, the lemmatizer is applied

• Postprocessor: Replaces markers with
constants

• The query can run in the DBMS

6FKHPD

64/�1/�SDLUV�
WHPSODWHV

6ORW�ILOO�
OH[LFRQV

*HQHUDWRU

$XJPHQWDWLRQ

1HXUDO�7UDQVODWRU

'%06

1/�4XHU\

3DUDPHWHU�
+DQGOHU

5XQWLPH�SKDVH7UDLQLQJ�SKDVH

/HPPDWL]HU

/HPPDWL]HU

3RVW�SURFHVVRU

*HQHUDWHG�WUDLQLQJ�VHW�

³:KDW�DUH�FLWLHV�ZKRVH�VWDWH�LV�
0DVVDFKXVHWWV"´
6(/(&7�QDPH�)520�FLWLHV�
:+(5(�VWDWH� �µ0DVVDFKXVHWWV¶

³6KRZ�PH�DYHUDJH�SRSXODWLRQ�
RI�FLWLHV�IRU�HDFK�VWDWH´
6(/(&7�VWDWH��$9*�SRSXODWLRQ��
)520�FLWLHV�*5283�%<�VWDWH

«���

Figure 2: DBP��’s Training and Runtime Phases

data produced by our Generator in order to o�er more accu-
rate and linguistically robust translations. During augmenta-
tion, the training data generation pipeline automatically adds
new NL-SQL pairs by leveraging existing general-purpose
data sources and models to linguistically vary the NL part
of each pair. The goal of the augmentation phase is thus to
cover a wide spectrum of linguistic variations for the same
SQL query, which represent di�erent versions of how users
might phrase the query in NL. This augmentation is the key
to make the translation model robust and allows DBP�� to
provide better query understanding capabilities than exist-
ing standalone approaches. Section 3.2 describes this process
in more detail.

2.2.3 Lemmatization. Finally, in the last step of the data
generation procedure, the resulting NL-SQL pairs are lem-
matized to normalize the representation of individual words.
During this process, di�erent forms of the same word are
mapped to the word’s root in order to simplify the analysis
(e.g., “cars” and “car’s” are replaced with “car”). The same
lemmatization is applied at runtime during the aforemen-
tioned pre-processing step.

3 TRAINING PHASE
In this section, we describe DBP��, our fully pluggable train-
ing data generation pipeline, which is designed to improve

the translation accuracy and linguistic robustness of existing
NL2SQL deep learning models. After describing the steps
of our training pipeline in detail, we discuss an optimiza-
tion procedure of the data generation process to increase the
model quality via parameter tuning. Finally, we elaborate on
the model training process, including a description of the
details of the model architecture and the hyperparameters
used in training.

3.1 Data Instantiation
The main observation of the instantiation step is that SQL, as
opposed to NL, has signi�cantly less expressivity. We there-
fore use query templates to instantiate di�erent possible SQL
queries that a user might phrase against a given database
schema, such as:

Select {A�ribute}(s) From {Table}Where {Filter}

The main idea of data instantiation is that the space of
possible SQL queries a user might phrase against a given
database schema can be de�ned using a set of SQL templates.
The SQL templates cover a variety of query types, from sim-
ple SELECT-FROM-WHERE queries to more complex group-by
aggregation queries, as well as some simple nested queries.
For each SQL template, we de�ne one or more NL templates
as counterparts for direct translation, such as:

{SelectPhrase} {A�ribute}(s) {FromPhrase} {Table}(s)
{WherePhrase} {Filter}

It is important to note that we do not use actual constants
in the �lter predicates. Instead, we use placeholders (e.g.,
@AGE) that represent an arbitrary constant for a given table
attribute. This makes the model trained on the generated
data independent of concrete values used in the database;
thus retraining is not required after inserts or updates.
To account for the expressivity of NL compared to SQL,

our templates contain slots for speech variation (e.g., Select-
Phrase, FromPhrase, WherePhrase) in addition to slots for
database objects (e.g., tables, attributes). Then, to instantiate
the initial training set, the Generator repeatedly instantiates
each of our NL templates by �lling in the corresponding slots.
Table, column, and �lter slots are �lled using information
from the database’s schema, while a diverse array of NL slots
are �lled using manually crafted dictionaries of synonymous
words and phrases. For example, the phrases “what is” or
“show me” can be used to instantiate the SelectPhrase. A fully
instantiated NL-SQL pair might look like:

Table, column, and �lter slots are �lled using information
from the database’s schema, while a diverse array of natural
language slots are �lled using manually crafted dictionaries
of synonymous words and phrases. For example, the phrases

Research 26: Usability and Natural Language User Interfaces SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2350

Queries over Multiple Tables

Queries over Multiple Tables

• Possible approach: Generation of Candidate Networks
• Problem:

• Given a set of references to DB elements, generate a join expression that

retrieves joint tuples that best satisfy all of these references

• Concepts:
• Each reference may correspond to different sets of tuples in the DB

• Query Match: Combination of tuples sets that satisfies user need

• Candidate Network: join expression that retrieves a Query Match

• Alternatively: a matching tree extracted from the DB schema seem as a graph

Chapter 3

Lathe Overview

In this chapter, we present an overview of our system Lathe for generating SQL queries
given a keyword query with references to the database schema

We begin by presenting a simple example of the task carried out by the method.
For this, we use the sample movie database we illustrate in Figure 3.1. This database
is actually a simplified excerpt of the well-known IMDB1.

PERSON
ID Name

t1 1 Will Smith
t2 2 Will Theakston
t3 3 Maggie Smith
t4 4 Sean Bean
t5 5 Elijah Wood

MOVIE
ID Title Year

t6 6 Men in Black 1997
t7 7 I am Legend 2007
t8 8 Harry Potter and the Sorcerer’s Stone 2001
t9 6 The Lord of the Rings: The Fellowship of the Ring 2001
t10 10 The Lord of the Rings: The Return of the King 2003
t11 11 Silent Hill 2006

CHARACTER
ID Name

t12 12 Agent J
t13 13 Robert Neville
t14 14 Marcus Flint
t15 15 Minerva McGonagall
t16 16 Boromir
t17 17 Frodo Baggins
t18 18 Christopher da Silva

ROLE
ID Name

t19 19 Actor
t20 20 Actress
t21 21 Producer
t22 22 Writer
t23 23 Director
t24 24 Editor

CASTING
ID Person_ID Movie_ID Char_ID Role_ID

t25 25 1 6 12 19
t26 26 1 7 13 19
t27 27 2 8 14 19
t28 28 3 8 15 20
t29 29 4 9 16 19
t30 30 4 10 16 19
t31 31 4 11 18 19
t32 32 5 9 17 19
t33 33 5 10 17 19

Figure 3.1: A sample movie database taken from IMDB

Consider that a user inputs the keyword query Q=“will smith films”, and as-
sume that she wants the system to list the movies in which Will Smith appears. Notice
that, in this query, terms “will ” and “smith” are likely to match the contents of some
relation in database, while the term “films” is likely to match to the name of a relation
or attribute.

1Internet Movie Database https://www.imdb.com/interfaces/

9

will smith films
References to DB

Chapter 3

Lathe Overview

In this chapter, we present an overview of our system Lathe for generating SQL queries
given a keyword query with references to the database schema

We begin by presenting a simple example of the task carried out by the method.
For this, we use the sample movie database we illustrate in Figure 3.1. This database
is actually a simplified excerpt of the well-known IMDB1.

PERSON
ID Name

t1 1 Will Smith
t2 2 Will Theakston
t3 3 Maggie Smith
t4 4 Sean Bean
t5 5 Elijah Wood

MOVIE
ID Title Year

t6 6 Men in Black 1997
t7 7 I am Legend 2007
t8 8 Harry Potter and the Sorcerer’s Stone 2001
t9 6 The Lord of the Rings: The Fellowship of the Ring 2001
t10 10 The Lord of the Rings: The Return of the King 2003
t11 11 Silent Hill 2006

CHARACTER
ID Name

t12 12 Agent J
t13 13 Robert Neville
t14 14 Marcus Flint
t15 15 Minerva McGonagall
t16 16 Boromir
t17 17 Frodo Baggins
t18 18 Christopher da Silva

ROLE
ID Name

t19 19 Actor
t20 20 Actress
t21 21 Producer
t22 22 Writer
t23 23 Director
t24 24 Editor

CASTING
ID Person_ID Movie_ID Char_ID Role_ID

t25 25 1 6 12 19
t26 26 1 7 13 19
t27 27 2 8 14 19
t28 28 3 8 15 20
t29 29 4 9 16 19
t30 30 4 10 16 19
t31 31 4 11 18 19
t32 32 5 9 17 19
t33 33 5 10 17 19

Figure 3.1: A sample movie database taken from IMDB

Consider that a user inputs the keyword query Q=“will smith films”, and as-
sume that she wants the system to list the movies in which Will Smith appears. Notice
that, in this query, terms “will ” and “smith” are likely to match the contents of some
relation in database, while the term “films” is likely to match to the name of a relation
or attribute.

1Internet Movie Database https://www.imdb.com/interfaces/

9

will smith PERSON[Will Smith]
MOVIE.Title

PERSON[Will Smith]
⋈ CASTING ⋈

MOVIE.Title

set of tuples
matching
will smith

set of tuples
matching films

Query Match 1 Candidate
Network 1

References to DB

Chapter 3

Lathe Overview

In this chapter, we present an overview of our system Lathe for generating SQL queries
given a keyword query with references to the database schema

We begin by presenting a simple example of the task carried out by the method.
For this, we use the sample movie database we illustrate in Figure 3.1. This database
is actually a simplified excerpt of the well-known IMDB1.

PERSON
ID Name

t1 1 Will Smith
t2 2 Will Theakston
t3 3 Maggie Smith
t4 4 Sean Bean
t5 5 Elijah Wood

MOVIE
ID Title Year

t6 6 Men in Black 1997
t7 7 I am Legend 2007
t8 8 Harry Potter and the Sorcerer’s Stone 2001
t9 6 The Lord of the Rings: The Fellowship of the Ring 2001
t10 10 The Lord of the Rings: The Return of the King 2003
t11 11 Silent Hill 2006

CHARACTER
ID Name

t12 12 Agent J
t13 13 Robert Neville
t14 14 Marcus Flint
t15 15 Minerva McGonagall
t16 16 Boromir
t17 17 Frodo Baggins
t18 18 Christopher da Silva

ROLE
ID Name

t19 19 Actor
t20 20 Actress
t21 21 Producer
t22 22 Writer
t23 23 Director
t24 24 Editor

CASTING
ID Person_ID Movie_ID Char_ID Role_ID

t25 25 1 6 12 19
t26 26 1 7 13 19
t27 27 2 8 14 19
t28 28 3 8 15 20
t29 29 4 9 16 19
t30 30 4 10 16 19
t31 31 4 11 18 19
t32 32 5 9 17 19
t33 33 5 10 17 19

Figure 3.1: A sample movie database taken from IMDB

Consider that a user inputs the keyword query Q=“will smith films”, and as-
sume that she wants the system to list the movies in which Will Smith appears. Notice
that, in this query, terms “will ” and “smith” are likely to match the contents of some
relation in database, while the term “films” is likely to match to the name of a relation
or attribute.

1Internet Movie Database https://www.imdb.com/interfaces/

9

will smith
PERSON[Will]

PERSON[Smith]
MOVIE.Title

set of tuples
matching smith

set of tuples
matching will

set of tuples
matching films

PERSON[Will]
⋈ CASTING ⋈

MOVIE.Title
⋈ CASTING ⋈
PERSON[Smith]Query Match 2 Candidate

Network 2

References to DB

Candidate Networks Generated

ID Name ID Person_ID Movie_ID ID Title Year
1 Will Smith 25 1 6 ... 6 Men in Black 1997

1 Will Smith 26 1 7 .. 7 I am Legend 2007

ID Name ID Person_ID Movie_ID ... ID Title Year ID Person_ID Movie_ID ... ID Name

2 Will Theakston 27 2 8 ... 8
Harry Potter and the

Sorcerer’s Stone
2001 28 3 8 ... 3 Maggie Smith

will smith

will smith

Candidate Network Generation

• Combinatorial Problem: answers must include all references
minimally, i.e., without redundancies

• Example: Mondial Database (CIA Factbook)
• 28 tables, 17,115 tuples, 104 FKs

• For the query "South East" :
• 208 possible Query Matches
• 105 possible Candidate Networks
• Up to 10 tables involved

Candidate Network Generation - Approaches

• Problem raised in the context of the DISCOVER system
[Hristidis@VLDB'02], pioneer work in keyword queries over DBs
• A series of works produced in our group improved the efficiency in

the generation process and the quality of the Candidate Networks
• Efficient Generation of Candidate Networks

• [Oliveira@ICDE'18] and [Oliveira@TKDE'20]

• Ranking of Candidate Networks
• [Oliveira@ICDE'15] and [Oliveira@TKDE’20]

Conclusion and Remarks

What was not covered here ...

• Systems for keyword queries in relational BDs
• [Yu@IDEB'10] : A little old survey

• [Affolter@VLDBJ'19] : Much more recent. It also covers various DCS

• Experimental Results
• [Kim@PVLDB'20]: Excellent recent survey with experimental results of several

NLIDBs with various benchmarks.

• Applications in Conversational and Dialogue Systems
• [Ozcan@SIGMOD'20]: Tutorial at SIGMOD 2020.

• Authors from the ATHENA/ATHENA++ group at IBM. It also covers several NLIDBs.

Some Further Developments
• Database Exploration - Tool for Data Scientists and Analyst

• Doctors, biologists, financial analysts, lawyers, marketing staff, ...
• Old proposal [Dar@VLDB'98], but only recently carried out.
• Examples: SODA [Blunschi@VLDB'12] and ATHENA [Lei@IDEB'18]

• Natural language as inter-model Lingua Franca
• Polystores [Duggan@SIGREC'15]: Federations of DBs with multiple data models
• Data Lakes : centralized repository of raw or minimally cured data available to

perform analytical activities [Terrizzano@CIDR'15]
• Idea explored with keyword queries at INRIA [Hadda@CoRR'20]

• Somewhat surprising connection with the schema evolution problem
• More "relaxed" queries are less vulnerable to changes in the DB schema

• Idea explored in LESSQL [Afonso@SANER'20] developed by our group.

Thanks to …
• The Divine Wisdom

• Mirian, Genoveva and Anne-Lyse for the kind invitation

• You all for attending … I am honored

• UFAM, Institute of Computing, Graduate Program in

Informatics

• The Database and Information Retrieval Group

• JusBrasil and Méliuz

• Research Support and access to real problems that matter

• CAPES, CNPq and FAPEAM

• Research Support

• Paulo Martins, Lucas Citolin, Brandell Ferreira,

• SAMSUNG: Support to Paulo Martins

References – Surveys and Tutorial
• [Affolter@VLDBJ’19] Katrin Affolter, Kurt Stockinger, Abraham Bernstein: A

comparative survey of recent natural language interfaces for databases.
VLDB J. 28(5): 793-819 (2019)

• [Kim@PVLDB'20] Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, Hongrae
Lee:Natural language to SQL: Where are we today? Proc. VLDB Endow.
13(10): 1737-1750 (2020)

• [Ozcan@SIGMOD'20] Fatma Ozcan, Abdul Quamar, Jaydeep Sen, Chuan
Lei, Vasilis Efthymiou: State of the Art and Open Challenges in Natural
Language Interfaces to Data. SIGMOD Conference 2020: 2629-2636
• IBM Tutorial - same authors of ATHENA
• https://leichuan.github.io/files/sigmod20-tutorial-slides.pdf

Further References

Further References (1)
• [Affolter@VLDBJ'19] Katrin Affolter, Kurt Stockinger, Abraham Bernstein: A compara?ve survey of

recent natural language interfaces for databases. VLDB J. 28(5): 793-819 (2019) Survey VLDBJ

• [Afonso@SANER'20] Afonso, A., da Silva, A., Conte, T., Mar?ns, P., Cavalcan?, J., & Garcia, A.
(2020, February). LESSQL: Dealing with Database Schema Changes in Con?nuous Deployment. In
2020 IEEE 27th Interna?onal Conference on Sorware Analysis, Evolu?on and Reengineering
(SANER) (pp. 138-148). IEEE.

• [Baik@ICDE'19] C. Baik, H. V. Jagadish, and Y. Li. Bridging the seman?c gap with SQL query logs in
natural language interfaces to databases. In ICDE, pages 374–385, 2019. Templar

• [Basik@SIGMOD'18-Demo] Basik, F., Häuasch, B., Ilkhechi, A., Usta, A., Ramaswamy, S., Utama, P.,
Weir, N., Binnig, C., Ce?ntemel, U.: DBPal: A learned NL-interface for databases. In: Proceedings of
the 2018 Interna?onal Conference on Management of Data, pp. 1765–1768. ACM (2018) DBPAL

• [Blunschi@VLDB'12] Lukas Blunschi, Claudio Jossen, Donald Kossmann, Magdalini Mori, Kurt
Stockinger: SODA: Genera?ng SQL for Business Users. Proc. VLDB Endow. 5(10): 932-943 (2012)
SODA

Further References (2)
• [Bogin@ACL'19] B. Bogin, J. Berant, and M. Gardner. Representing schema structure with

graph neural networks for text-to-sql parsing. In ACL, pages 4560–4565, 2019. IRNet
• [Bojanowski@TACL'17] Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas Mikolov:

Enriching Word Vectors with Subword Information. Trans. Assoc. Comput. Linguistics 5:
135-146 (2017)

• [Bowen@WITS'04] Bowen, P., Chang, C., Rohde, F.: Non-length based query challenges:
an initial taxonomy. In: 14th Annual Workshop on Information Technology and Systems,
WITS, pp. 74–79 (2004)

• [Codd@IFIP'1974] E. F. Codd: Seven Steps to Rendezvous with the Casual User. IFIP
Working Conference Data Base Management 1974: 179-200

• [Collobert@JMLR'11] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen,
Koray Kavukcuoglu, Pavel P. Kuksa: Natural Language Processing (Almost) from Scratch. J.
Mach. Learn. Res. 12: 2493-2537 (2011)

Further References (3)
• [Dar@VLDB'98] Dar, S., Entin, G., Geva, S., & Palmon, E. (1998, August). DTL's DataSpot: Database

exploration using plain language. In VLDB (Vol. 98, pp. 24-27).

• [Duggan@SIGREC'15] Jennie Duggan, Aaron J. Elmore, Michael Stonebraker, Magda Balazinska,
Bill Howe, Jeremy Kepner, Sam Madden, David Maier, Tim Mattson, and Stan Zdonik. 2015. The
BigDAWG Polystore System. SIGMOD Rec. 44, 2 (June 2015), 11–16. Polystores

• [Guo@ACL'19] J. Guo, Z. Zhan, Y. Gao, Y. Xiao, J. Lou, T. Liu, and D. Zhang. Towards complex text-to-
sql in cross-domain database with intermediate representation. In ACL, pages 4524–4535, 2019.
GNN

• [Hadda@CoRR'20] Mhd Yamen Haddad, Angelos Anadiotis, Yamen Mhd, Ioana Manolescu:
Graph-based keyword search in heterogeneous data sources. CoRR abs/2009.04283 (2020)

• [Hendrix@TODS'1978] G.G., Sacerdoti, E.D., Sagalowicz, D., Slocum, J.: Developing a natural
language interface to complex data. ACM Trans. Database Syst. (TODS) 3(2), 105–147 (1978)

• [Huang@NAACL-HLT'18] P. Huang, C. Wang, R. Singh, W. Yih, and X. He. Natural language to
structured query generation via meta-learning. In NAACL-HLT, pages 732–738, 2018. PT-MAML

Further References (4)
• [Iyer@ACL'17] S. Iyer, I. Konstas, A. Cheung, J. Krishnamurthy, and L. Zettlemoyer.

Learning a neural semantic parser from user feedback. In ACL, pages 963–973, 2017. NSP
• [Kim@PVLDB'20] Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, Hongrae Lee:Natural

language to SQL: Where are we today? Proc. VLDB Endow. 13(10): 1737-1750 (2020)
Survey dos Coreanos

• [Lapata@ACL'18] M. Lapata and L. Dong. Coarse-to-fine decoding for neural semantic
parsing. In ACL, pages 731–742, 2018. Coarse2Fine

• [Lei@IDEB'18] Lei, C., Özcan, F., Quamar, A., Mittal, A. R., Sen, J., Saha, D., &
Sankaranarayanan, K. (2018). Ontology-Based Natural Language Query Interfaces for
Data Exploration. IEEE Data Eng. Bull., 41(3), 52-63.

• [Li@PVLDB'14] F. Li and H. V. Jagadish. Constructing an interactive natural language
interface for relational databases. PVLDB, 8(1):73–84, 2014. NALIR

• [Marneffe@LREC'06] M.-C. de Marneffe, B. MacCartney, and C. D. Manning. Generating
typed dependency parses from phrase structure parses. In LREC, pages 449–454, 2006.

Further References (5)
• [Mikolov@NIPS'13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, Jeffrey Dean: Distributed

Representatons of Words and Phrases and their Compositonality. NIPS 2013: 3111-3119
• [Oliveira@ICDE'15] Pericles de Oliveira, Altgran Soares da Silva, Edleno Silva de Moura: Ranking Candidate

Networks of relatons to improve keyword search over relatonal databases. ICDE 2015: 399-410
• [Oliveira@ICDE'18'] Pericles de Oliveira, Altgran Soares da Silva, Edleno Silva de Moura, Rosiane Rodrigues:

Match-Based Candidate Network Generaton for Keyword Queries over Relatonal Databases. ICDE 2018:
1344-1347

• [Oliveira@TKDE'20] Pericles de Oliveira, Altgran Soares da Silva, Edleno Silva de Moura, Rosiane Rodrigues,
"Efficient Match-Based Candidate Network Generaton for Keyword Queries over Relatonal Databases," in
IEEE Transactons on Knowledge and Data Engineering,

• [Ozcan@SIGMOD'20] Fatma Ozcan, Abdul Quamar, Jaydeep Sen, Chuan Lei, Vasilis Exhymiou: State of the
Art and Open Challenges in Natural Language Interfaces to Data. SIGMOD Conference 2020: 2629-2636
Tutorial IBM

• [Pennington@EMNLP'14] Jeffrey Pennington, Richard Socher, Christopher D. Manning:Glove: Global Vectors
for Word Representaton. EMNLP 2014: 1532-1543

Further References (6)
• [Popescu@COLING'94] A. Popescu, A. Armanasu, O. Etzioni, D. Ko, and A. Yates. Modern natural language

interfaces to databases: Composing statistical parsing with semantic tractability. In COLING, 2004 PRECISE
• [Saha@PVLDB'16] Saha, D., Floratou, A., Sankaranarayanan, K., Minhas, U. F., Mittal, A. R., & Özcan, F. (2016).

ATHENA: an ontology-driven system for natural language querying over relational data stores. Proceedings of
the VLDB Endowment, 9(12), 1209-1220. ATHENA

• [Santos@SBBD'18] Gilberto Santos, Pericles de Oliveira, Altigran Soares da Silva, Edleno Silva de Moura,
Lathe: light-Weight Keyword Query Processing over Multiple Databases. SBBD Companion 2018: 1-4

• [Sen@PVLDB'20] Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma Özcan, Vasilis Efthymiou, Ayushi Dalmia,
Greg Stager, Ashish R. Mittal, Diptikalyan Saha, Karthik Sankaranarayanan: ATHENA++: Natural Language
Querying for Complex Nested SQL Queries. Proc. VLDB Endow. 13(11): 2747-2759 (2020) ATHENA++

• [Sen@SIGMOD'19-Demo] Jaydeep Sen, Fatma Ozcan, Abdul Quamar, Greg Stager, Ashish R. Mittal, Manasa
Jammi, Chuan Lei, Diptikalyan Saha, Karthik Sankaranarayanan: Natural Language Querying of Complex
Business Intelligence Queries. SIGMOD Conference 2019: 1997-2000 ATHENA++

• [Terrizzano@CIDR'15] Terrizzano, I. G., Schwarz, P. M., Roth, M., & Colino, J. E. (2015, January). Data
Wrangling: The Challenging Yourney from the Wild to the Lake. In CIDR.

Further References (7)
• [Weir@SIGMOD'20] Nathaniel Weir, Prasetya Utama, Alex Galakatos, Andrew Crotty, Amir Ilkhechi, Shekar

Ramaswamy, Rohin Bhushan, Nadja Geisler, Benjamin Hättasch, Steffen Eger, Ugur Çetintemel, Carsten
Binnig: DBPal: A Fully Pluggable NL2SQL Training Pipeline. SIGMOD Conference 2020: 2347-2361 DBPAL

• [Woods@AFIPS'1973] Woods, W.A.: Progress in natural language understanding: an application to lunar
geology. In: Proceedings of National Com- puter Conference and Exposition. AFIPS ’73, pp. 441–450 (1973)

• [Xu@CoRR'17] X. Xu, C. Liu, and D. Song. Sqlnet: Generating structured queries from natural language
without reinforcement learning. CoRR, abs/1711.04436, 2017. SQLNet

• [Yaghmazadeh,OOPSLA'17] N. Yaghmazadeh, Y. Wang, I. Dillig, and T. Dillig. Sqlizer: query synthesis from
natural language. PACMPL, 1(OOPSLA):63:1–63:26, 2017 Sqlizer

• [Yu@EMNLP'18] T. Yu, M. Yasunaga, K. Yang, R. Zhang, D. Wang, Z. Li, and D. R. Radev. Syntaxsqlnet: Syntax
tree networks for complex and cross-domain text-to-sql task. In EMNLP, pages 1653–1663, 2018.
SyntaxSQLNet

• [Yu@EMNLP'18] T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, I. Li, Q. Yao, S. Roman, Z. Zhang,
and D. R. Radev. Spider: A large-scale human-labeled dataset for complex and cross-domain semantic parsing
and text-to-sql tasks. In EMNLP, pages 3911–3921, 2018. SPIDER Benchmark

Further References (8)
• [Yu@IDEB'10] Yu, Jeffrey Xu, Lu Qin, and Lijun Chang. "Keyword search in relational databases: A survey."

IEEE Data Eng. Bull. 33, no. 1 (2010): 67-78.
• [Yu@NAACL-HLT'18] T. Yu, Z. Li, Z. Zhang, R. Zhang, and D. R. Radev. Typesql: Knowledge-based type-aware

neural text-to-sql generation. In NAACL-HLT, pages 588–594, 2018.TypeSQL
• [Zeng@ACL'20-Demo] Jichuan Zeng, Xi Victoria Lin, Steven C. H. Hoi, Richard Socher, Caiming Xiong, Michael

R. Lyu, Irwin King: Photon: A Robust Cross-Domain Text-to-SQL System. ACL (demo) 2020: 204-214 Photon
• [Zeng@CoRR'20] Jichuan Zeng, Xi Victoria Lin, Caiming Xiong, Richard Socher, Michael R. Lyu, Irwin King,

Steven C. H. Hoi: Photon: A Robust Cross-Domain Text-to-SQL System. CoRR abs/2007.15280 (2020) Photon
• [Zhong@arXiv’17] V Zhong, C Xiong, R Socher Seq2sql: Generating structured queries from natural language

using reinforcement learning, arXiv, 2017
• [Zhong@CoRR'17] V. Zhong, C. Xiong, and R. Socher. Seq2sql: Generating structured queries from natural

language using reinforcement learning. CoRR, abs/1709.00103, 2017. Seq2SQL e WikiSQL Benchmark.
• [Zhou@ACL'18] M. Zhou, G. Cao, T. Liu, N. Duan, D. Tang, B. Qin, X. Feng, J. Ji, and Y. Sun. Semantic parsing

with syntax- and table-aware SQL generation. In ACL, pages 361–372, 2018. STAMP

