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Problem :

Dynamic assignment strategy to evaluate A/B testing :
On a sample of e-visitors, an A/B test consists in comparing several variations of the same element. Usually
two variants are available, which are denoted by A (i.e., the original web-page) and B (i.e. variation to be
tested).

Purposes
I Choose to implement the variation B, keep the original A or implement a custom
strategy.
I Reducing the observation phase and increase the exploitation phase.

Constraints
I During a given A/B test, a variant is definitively affected to a visitor even if he/she
comes back again.
I Discovery of the best variation must be performed while limiting the regret (i.e., the
cost of each bad choice), which is inherent to this process.
I The experiment is not reproducible.

Problems :

I Establishing a confidence index on the performance in order to identify the best
variation.
I Personalized Testing.
I Can also be viewed as a reinforcement learning method.
I Exploration/exploitation dilemma with cost constraints (cf constraints)

State of the art

I When the population is not homogeneous, the use of only one bandit is often not
appropriate.
I Require a prior knowledge on the context, on the relevance of the attributes and on
the correlation between them.
I In most cases, the e-merchant can not provide such knowledge making them diffi-
cult to use.

A multi-context approach :

I Creation of clusters of visitors using historic navigation data.
I The actual test which independently uses a bandit algorithm for each identified subgroup.
I Independent exploration / exploitation compromise for each group.
I Affecting each visitor differently after their personal characteristics and navigation history.
→ Independent dynamic allocation for each group

A new approach which combines the two steps
I Preliminary analysis - offline (Fig. top right)
• Creation of two clusters of visitors using historic navigation data.
• Extraction of the topics of interest to improve the visitor’s profile.
• Patterns identification (regression tree) in visitor profiles to highlight common behaviours (Fig. 1)
• Predict the conversion rate for each groups

I Analysis - online (Fig. down right)
• A new visitor is affected to a subgroup using the regression tree.
• Apply A or B following a bandit strategy dedicated to this group→bandit strategy for each subgroups
independently
• Evaluate the impact of a decision from a quantifiable reward
• Adapt the dynamic allocation model.
• Compare results between A and B for each group.
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Numerical Experiments :
Dataset from a fashion e-commerce website : 11168 visitors for 10 days - 6 patterns of navigation - 10 patterns of topics

Our results
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FIGURE 1 – Example of a regression tree (10 groups identified)

Bandit Node 3 Node 5 Node 7 Node 8 Node 11 Node 12 Node 15 Node 16 Node 18 Node 19 TOTAL
Winner A B A B A A A A A
Reward 573 50 39 51 10 9 0 628 6 91 1457
Visitors 1878 99 131 181 310 475 0 7380 105 609 11168
Proba 0.66 0.74 0.88 0.63 0.52 0.72 0 0.96 0.73 0.91

TABLE 1 – Results of our approach

Comparison with existing approaches
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FIGURE 2 – Convergence - Our approach for a group (left) and Binomial Bandit (right)

Approach Our approach Binomial Bandit LinUCB
Winner B B
Reward 1457 1252 1300
Visitors 11168 11168 11168
Proba 0.69

TABLE 2 – Comparative validation results

Conclusion and perspectives :
I Work on the quality of the clusters.
I Anticipate the peaks and dips of the traffic in order to limit the interference with the analysis.
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