

Distributed Query Processing over a Wide-Area Network

Abdoul Macina*, Johan Montagnat⁺ & Olivier Corby* *Université Côte d'Azur, Inria, CNRS, I3S, ⁺Université Côte d'Azur, CNRS, I3S contact: macina@i3s.unice.fr, johan.montagnat@cnrs.fr, olivier.corby@inria.fr

POSITIONING

CONTEXT

• Growing volume of scientific data

 Distribution of data in many acquisition sites

Data publication for cross-analysis or secondary reuse

CHALLENGES

Distributed Query semantics

• To define and enforce a clear SPARQL DQP semantics

Performance and reliability

• To transform queries and generate execution plans that can be executed efficiently in parallel

OBJECTIVES

- To optimize performance and reliability of Distributed querying
- To design a SPARQL-compliant parallel query engine (KGRAM-DQP)

• To demonstrate the relevance of DQP techniques in realistic use cases

APPROACH: Distributed Query Processing (DQP)

DQP SEMANTICS OVER BOTH VERTICAL AND HORIZONTAL PARTITIONS

SELECT ?team ?group ?name ?members WHERE {

?team ns:team "SPARKS".

?team ns:group ?group.

BGP₁ from $S_1 U S_2$

?group ns:name ?name.

?group ns:members ?members. **BGP**₂ from S₃

Approaches:

Triple Pattern-based query processing

BGP-based query processing

Our approach: Hybrid rewriting based on predicates distribution

• To write most efficient BGPs

• BGPs for both horizontal and vertical partitions

BGP-based for all local BGPs

Triple Pattern-based for distributed BGP

Cost Estimation

For Triple Pattern : number of instances Statistics retrieved during sources selection step : SELECT COUNT(*) queries and others heuristics
For BGPs: *min(cost(TP_i) in BGP)*Subqueries sorting
Let *Q* the initial SPARQL query
After query rewriting: *Q* is a set of *BGPs*Recursive algorithm:
Get *BGP_i* with the *lowest cost* from remaining *BGPs* in *Q*Then search the *linked BGPs* to *BGP_i*:

Linked BGPs are sorted by

- Number of shared variables
- Number of linked BGPs

• Filters and Values added to linked BGPs

RESULTS

45000 r			5000 _r		
40000	Hybrid+Sorting	Demographic and	4500		
40000	FedX FedX	geographic data (INSEE)			
35000		P1 (duplication)	4000		
		P2 (global rewriting)	3500		,
				1	

