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Context: The understanding and evaluation of the impacts of fine-scale ran-
dom processes onto larger-scale processes is in a key challenge in in physical
oceanography. Ito-Wentzell formula provides the basic background to investi-
gate these issues from a theoretical and computational point of view. It states
that, for any Ito-drift time process Xt governed by

dXt = µtdt+GtdBt

with µt the drift, Bt a multivariate Wiener process andGt a matrix, any function
f of process Xt is also an Ito-drift process governed by the following stochastic
differential equation
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where Hf is the Hessian of f . When studying upper ocean dynamics, Xt typi-
cally refers to state variables where GtdBt a fine-scale unresolved random fluc-
tuation, and f(t,Xt) to some observed geophysical tracer. The above equation
exhibits a diffusion term GT

t HfGt on the observed tracer caused by the random
fluctuation. We may also stress that the numerical resolution of such Ito-drift
time processes may involve additional terms depending on the gradient of the
random fluctuation. A key scientific question is to investigate the extent
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to which upper ocean dynamics exhibit such relationships between
large-scale processes and fine-scale turbulence processes.

This internship is proposed in the framework of ANR Melody (Bridging geo-
physics and MachinE Learning for the modeling, simulation and reconstruction
of Ocean DYnamics, PI: R. Fablet) and ERC STUOD (Stochastic Transport in
Upper Ocean Dynamics, PI: B. Chapron).

Proposed approach: Neural Network schemes, termed neural ODE [2], have
recently emerged as new means to analyse, implement and identify ODEs and
PDEs (Ordinary/Partial Differential Equation). These NN representations open
new avenues for the identification of differential operators from observation
and/or simulation data [1, 4, 3].

The goal of this internship will be to investigate how NN schemes could help
revealing and understanding from data large-scale drift and diffusion processes
caused by fine-scale processes in the upper ocean. For different case-studies,
experiments will be performed on numerical simulations (e.g., toy models, re-
duced ocean models, HR ocean simulations). Experiments on real observation
datasets would also be of interest in a second step.

Skills: Msc./Eng. degree in Applied Math., Data Science and/or Physical
Oceanography with a good background in applied statistics. Knowledge on deep
learning models and experience in deep learning frameowrks (eg, tensorflow,
keras, pytorch) would be a plus.
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