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Goal-oriented physics-constrained machine learning for chaotic systems

The wide availability of data from everyone's numeric life (private photos, posts on social media,
travel logs, etc.) and ubiquitous inexpensive sensors have triggered a surge of interest in data-driven
techniques  for  exploiting  this  massive amount  of  data.  Computational  fluid dynamics  relies  on
massive numerical simulations and generates a considerable amount of data. The rise of machine
learning techniques has led to major efforts to enhance, and sometimes substitute, physics solvers.
Moreover, new strategies in optimization and control could be developed along this promising way.
Of particular  interest  for  scientific  purposes  is  the modeling  of  the behavior  of  a  system from
limited observations.  In particular,  one often needs to determine faithful and reliable  governing
equations accurately describing the time-evolution of the system under consideration.

Learning from data relies on the following steps:
- Fit each model from a given class of models on the available training data,
- Assess the quality of each model on a separate set of test data obtained from the same system as
the training data,
- Retain the model leading to the lowest test error.

The class of models generically described as "neural networks" has seen a spectacular renewed
interest in the last decade and has now become the gold standard in many applications. In particular,
deep networks, involving anywhere from 5 to 1000+ hidden layers of neurons, have demonstrated
impressive performance.

A similar framework has recently been used with a deep neural network architecture (Reservoir
Computing) to learn a model for the chaotic Kuramoto-Sivashinsky system, [2, 3]. The resulting
model is able to accurately predict the future state of the system up to about 6 Lyapunov exponent
times. Similar results were obtained by [4] and our team on a similar case [1], as shown in Figure 1.
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Figure 1: Prediction of KS. Top: direct numerical simulation. Center: Simulation obtained from the machine learning.
Bottom: Difference of the two fields. 

This remarkable result rises several largely open questions, also prototypical of a large class of
learning situations:

 What  are  the  reasons why this  deep neural  computing  allows such a  performance,  well
beyond the usual Lyapunov time limit ? How specific is the performance to the particular
architecture of this network ?

 In a broad sense, what is the best quantity to learn for achieving good general performance?
More  precisely,  what  is  the  good  metric  to  use  as  the  training  criterion  to  improve
generalizability of the model learned ? In a dual view, what is a relevant nonlinear transform
to pre-process the data so that it achieves a good validation error ?

 In many situations,  expertise  knowledge is  available  on the system under consideration.
How to  make  use  of  this  expertise  and reduce  the  dimension  of  the  learning  space  by
introducing relevant constraints such as symmetries, invariants, causality, etc.?

 In situations of active learning when the samples can be chosen, how to benefit from past
knowledge to improve the sampling scheme? How to adapt the design of experiment and
explore the system in an efficient way, given the objective function?

The objectives of this thesis will be to improve the learning process of a data-driven approach by
addressing the questions and limitations above, with particular attention to possible developments
for engineering applications. 

Specifically, different points will be addressed, including but not limited to:

1. Choice of the best cost function to get optimal results. Cost functions are typically defined in
terms of integral (L2) norm of the misfit residual. This choice is not always necessary and
one may want to employ other metrics. We would like to use a physics-based approach to
decide which feature deserves particular attention. For instance, one may need to ensure a
good learning in terms of Fourier spectrum, Lyapunov exponents, wavelet structure, optimal
transport-related  norms  (e.g.,  Wasserstein  distance),  etc.  We  will  first  analyze  how  a
standard L2 learning is relevant for other metrics. In a second step, these alternative metrics
will be directly employed as objective functions in a goal-oriented approach.

2. Many key questions will be at the center of the investigation:
How to sample the system under consideration in the most efficient  way? How to most
quickly discover its natural measure and adapt the sampling scheme accordingly? How to
explore  around  the  neutral  manifold  (when  it  exists)  in  useful  directions?  What  is  the
minimal number of samples one needs to learn a model of an attractor of a given dimension?

From a technical point of view, the work will  be first  conducted on relatively low-dimensional
dynamical  systems  such  as  Kuramoto-Sivashinky  to  develop  the  methodology.  The  simulation
codes are already available and parallelized on GPUs. 
In a second step, more complex systems such as fluid flows in both laminar and turbulent regimes
will be considered.
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This project is strongly multidisciplinary (applied maths, statistics, physics, fluid dynamics, data
analysis,  high- performance computing applied to engineering),  at  the edge of fundamental  and
applied research.
The successful candidate has a strong background in at least one of the following fields: statistics,
applied mathematics, machine learning. He/She is also an interdisciplinary, team-oriented, person
with good communication and writing skills.
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