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Increasingly large amount of multidimensional data are being generated on a daily basis in many
applications. This leads to a strong demand for learning algorithms to extract useful information from
these massive data. Machine learning is the science that deals with the development of algorithms that
can learn from data. Typical application is automatic categorization of text into categories, classification
between different kinds of data, weather prediction, movie recommendation, spam filtering, ...
Neural Network (NN) is powerful machine learning technique [1, 2]. Typically in the forward pass, two
main steps are involved.

1. Linear transformation of the data by a matrix G.
2. Nonlinear activation thanks to a θ-parameter dependent feature map fθ(·) ∈ R at each layer.
The hidden information associated to the data vector x is given by

fθ(Gx). (1)

The second step is the backward pass which is essentially an error backpropagation procedure dedica-
ted to the estimation of the NN parameters, i.e., the matrix G in different layers based on a score function
h(x). Traditionally, an NNs are trained via a one-way inputs and the linear transformation is viewed as a
one-way factorization. This may constrain the capability of characterizing the structural information in
real-world tasks.
This work deals with the extension of NN to multiple measurements. In this case, the trained data are
often multidimensional and can be viewed as a multiple measurement vectors (MMV) meaning that the
task of interest is the classification of the data matrix

X =
[
x1 x2 · · · xN

]
, (2)

into one of the categories in set Y. In this scenario, the feature tensor generalizing (1) is naturally defined
according to

N∏
j=1

fθij (xj) (3)

and the score function is given by

h(X) =
∑

i1,··· ,iN

G(i1, · · · , iN )

N∏
j=1

fθij (xj). (4)

Note that similar cost functions have been considered in [6,7]. Tensor factorization [9] and deep lear-
ning have been rapidly arising as the core technologies in various scientific fields ranging from psychology,
chemistry, neuroscience, signal processing, computer vision, and bioinformatics to data mining [8]. Mul-
tiple modalities, such as trials, conditions, channels, spaces, times, and frequencies, are ubiquitous in
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real-world data measurement. Powerful mathematical tools from tensor algebra can be used to extract
the salient features from multilinear transformation. Unfortunately, the complexity in term of storage
and computational costs to manage the massive tensor G is combinatorial with the dimensionality/order
and this problem is well known under the term of “curse of dimensionality” [3]. In the proposed work, the
goal is twofold :

1. explore advanced tensor factorisations [10] for mitigation of the “curse of dimensionality”, i.e.,
to manage the tensor G with a complexity linear with respect to the dimensionality/order. In
particular, factorisations over graph is a promising framework to reach this goal [11]. As illustrated
on Fig. 1, a 6-order tensor admits several graph-based representations where the nodes are low-
order tensors and the leafs are matrices. The principe here is to break the core tensor G into a
collection 3-order tensors graph-connected : {G1,G2,G3,G4}. Note that the connexion between the
leaning model of interest and the multidimensional convolutional Multiple Input Multiple Output
model presented for instance in [4, 5].

Figure 1 – Graph-based factorization of a 6-order tensor

2. propose new optimisation algorithms for backward pass adapted to the topology of the graph-based
tensor factorisation.
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