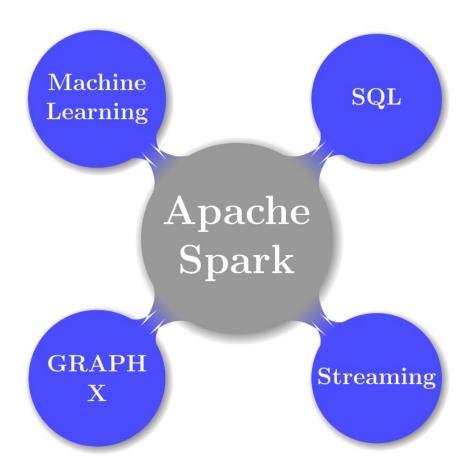
Big data astronomy with Apache Spark

C. Arnault, J-E. Campagne, J. Peloton, S. Plaszczynski...

Laboratoire de Physique des 2 Infinis

- Open source cluster-computing framework to deal with large datasets
- 2004: MapReduce (Google)
- 2006: Hadoop
- 2009: Apache Spark (~Hadoop++ with cache at that time)

Used by 1000+ companies in the world occasionally used in science (Particle Physics, Genomics, Astronomy).



https://astrolabsoftware.github.io/

Providing state-of-the-art cluster computing software to overcome modern science challenges

Spark-fits

Distribute FITS data with Apache Spark: Binary tables, images and more! API for Scala, Java, Python and R.

Learn More

🛱 spark3D

Apache Spark extension for processing large-scale 3D data sets: Astrophysics, High Energy Physics, Meteorology, ...

Learn More

>_ Interfaces

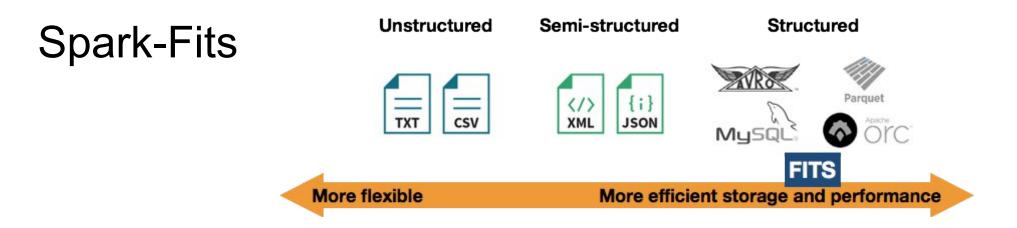
Interface Scala and Spark with your favourite languages: C/C++/Fortran and more!

Learn More

The team @ IJCLab

- Researchers/IT mix (~10 people)
- We maintain a small *Spark cluster* @"VirtualData" (Paris-Saclay):
 - 10 machines
 - 18 cores/36 GB RAM each
 - HDFS (multi-TB storage)
- Main focus on astronomy
 - Involved into LSST
- use NERSC supercomputers for brute force
 - Scaling up to 1000s of cores



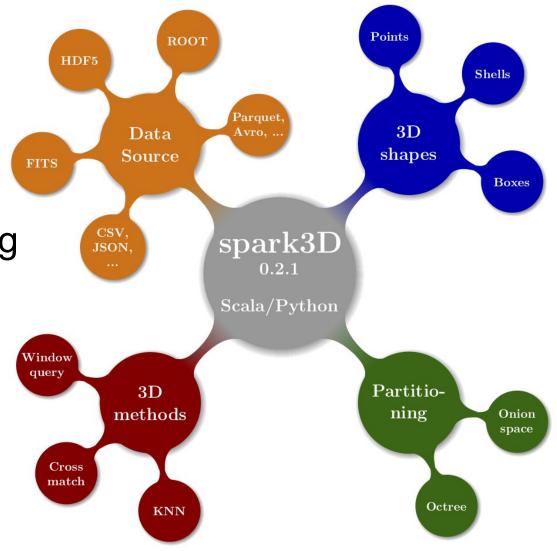


- Astronomy requires *structured* data, FITS is a standard
- wrote a high quality FITS reader
 - Manipulation of binTables and images in a distributed environment
- Different API: Scala, Python, Java and R
- Used by different communities: LSST, HST, SKA, CosmoHub

Peloton, Arnault, Plaszczynski (2018) Comput. Softw. Big Sci, 2,7

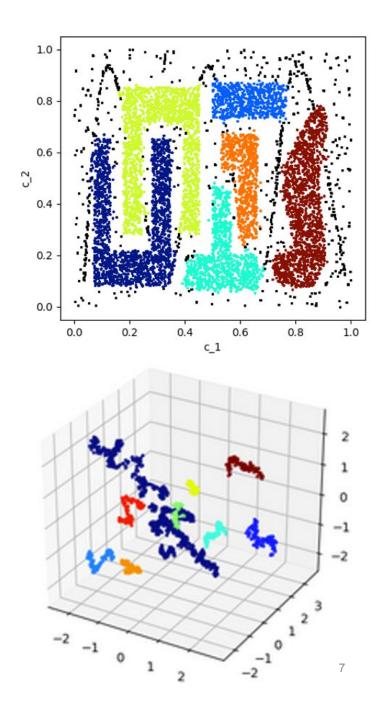
Spark3D

- Extension of Spark SQL for manipulation of 3D data
- 3D distributed partitioning • KDTree, Octree, shells, ...
- Distributed spatial queries & data mining
 - KNN, join, dbscan, ...
 - Typical usage on million/billion rows
- Visualisation
 - Client/server architecture



RP-DBSCAN

- Density Based Clustering (of Appl. with Noise) designed to be run on Spark cluster
- first really efficient algorithm: Hwanjun Song, Jae-Gil Lee SIGMOD'18, June 10-15, 2018, Houston, TX, USA)
- cell based+random partitioning
- Re-implemented in Scala (J.E Campagne 2019). Tested on our Spark Cluster.

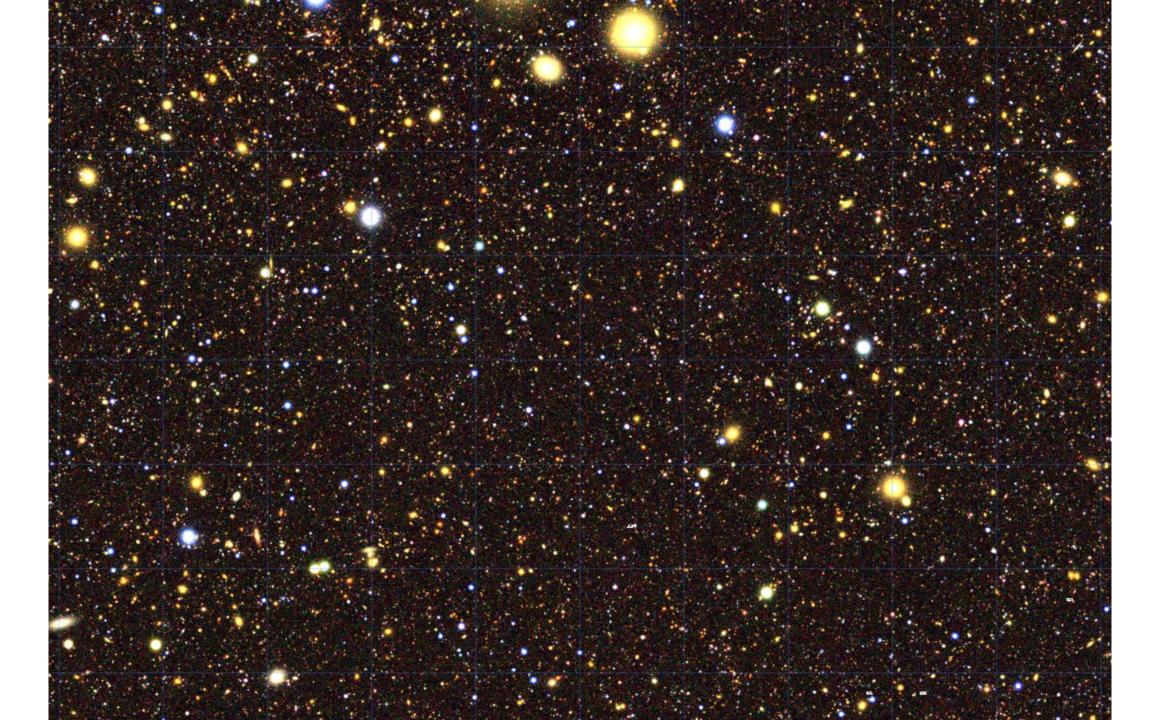


LSST

- new generation telescope in Chili (US+FR)
 - wide+deep extra-galactic survey
- 8.4 m primary mirror
- World's largest CCD camera: 3.2 Gpixels

In numbers:

10-year survey, starting 2022 (+1?)
~half of the sky every few days
1,000 images/night = 15TB/night
10 million transient candidates per night
billions of galaxies for cosmology (DESC)



User analysis

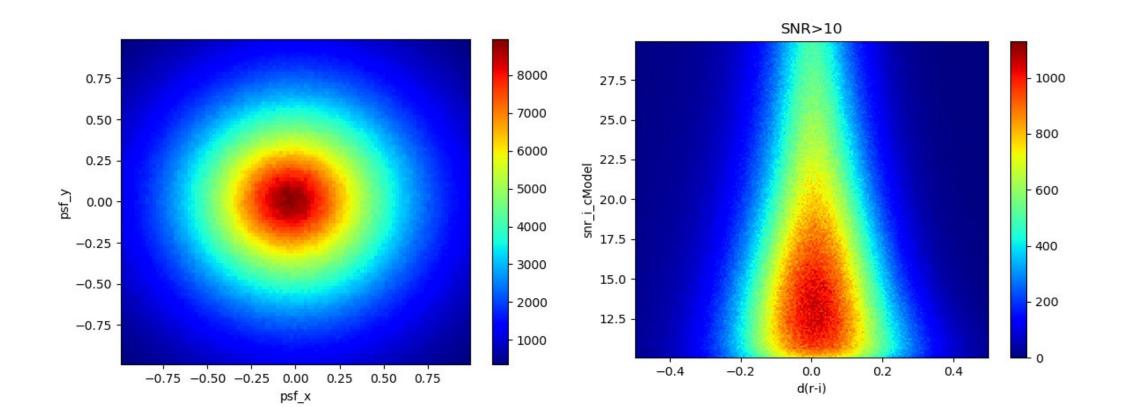
- spark-sql dataframes well suited (and simple) for *interactive* analysis of galactic data
- Fast sim : 6 10⁹ galaxies

Plaszczynski, Peloton, Arnault,Campagne (2019), Astr. & Comp., 28.

Section	analysis	python	scala
4.3.2	load(HDU)	2.8 ± 0.1	8.8 ± 0.2
	PZ + show(5)	12.4 ± 0.6	13.7 ± 1.2
4.3.4	cache (count)	97.7 ± 4.0	95.4 ± 5.0
4.3.5	stat(z)	3.9 ± 1.5	4.9 ± 2.5
	stat(all)	9.8 ± 1.0	11.0 ± 0.9
	minmax(z)	1.8 ± 0.3	3.2 ± 0.7
4.3.6	histo (dataframe)	11.5 ± 1.5	13.0 ± 0.8
	histo (UDF)	114.9 ± 5.6	13.9 ± 1.2
	histo (pandas UDF)	43.3 ± 4.5	_
4.3.7	1 shell	30 ± 3	13 ± 2
	all shells (10)	307 ± 34	130 ± 18

Validation

- DESC released a very detailed galactic simulation "DC2"
- ran the whole reconstruction pipeline -> measured catalog
- cross-match with Spark 50M x 80M : ~3 mins



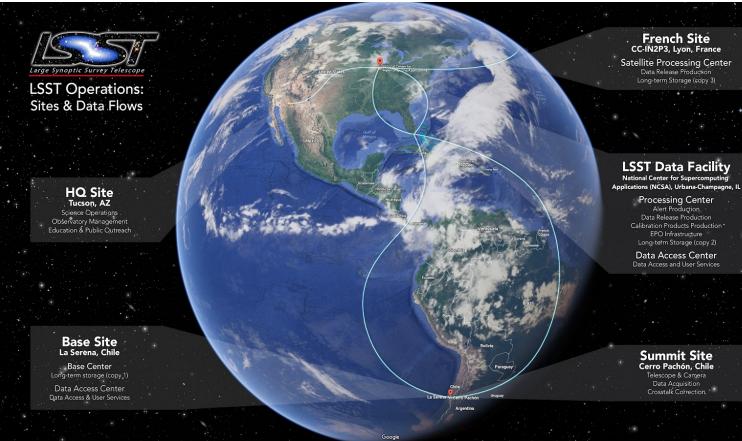
11

SparkCorr

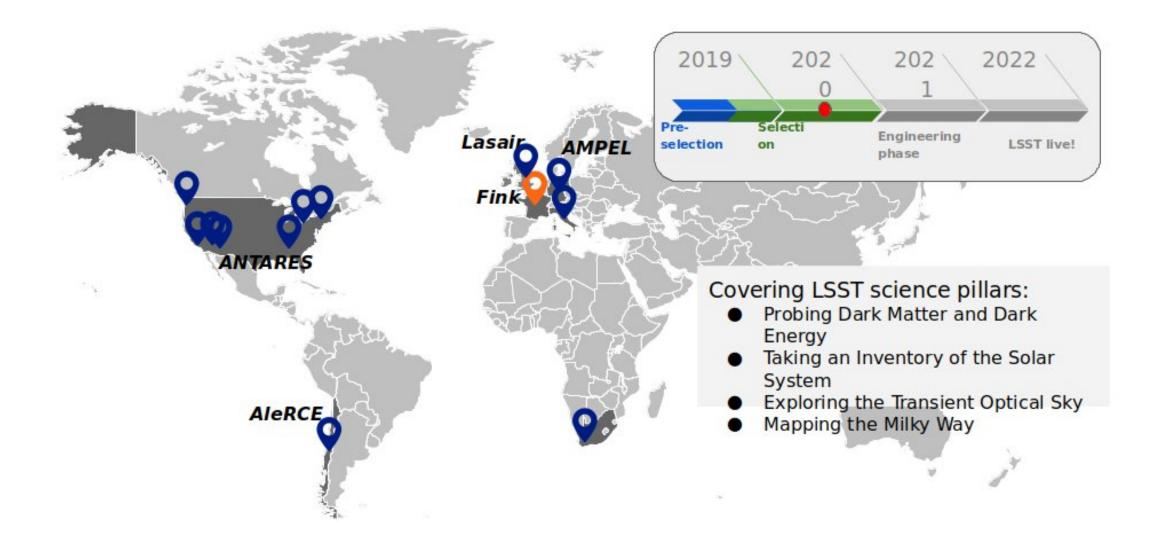
- counting the number of pairs in bins is a classical task (auto/cross correlations) : tomography
- combinatorics is huge
- existing (MPI) algorithms can make it up to ~10M in mins
- but not up to 100-200M necessary for LSST
- first results :
 - 1 min for 100M
 - 3 mins for 500M (32 nodes @NERSC)
- link to geometric graphs

The transient sky

- Forecasted: 10 million alerts per night...
- ~82KB/alert, 800 GB/night (3PB in 2030)
- 98% of alerts must be transmitted with 60 seconds of readout...
- ... and processed before the next night!
- Wires to send alerts worldwide are not infinitely big...



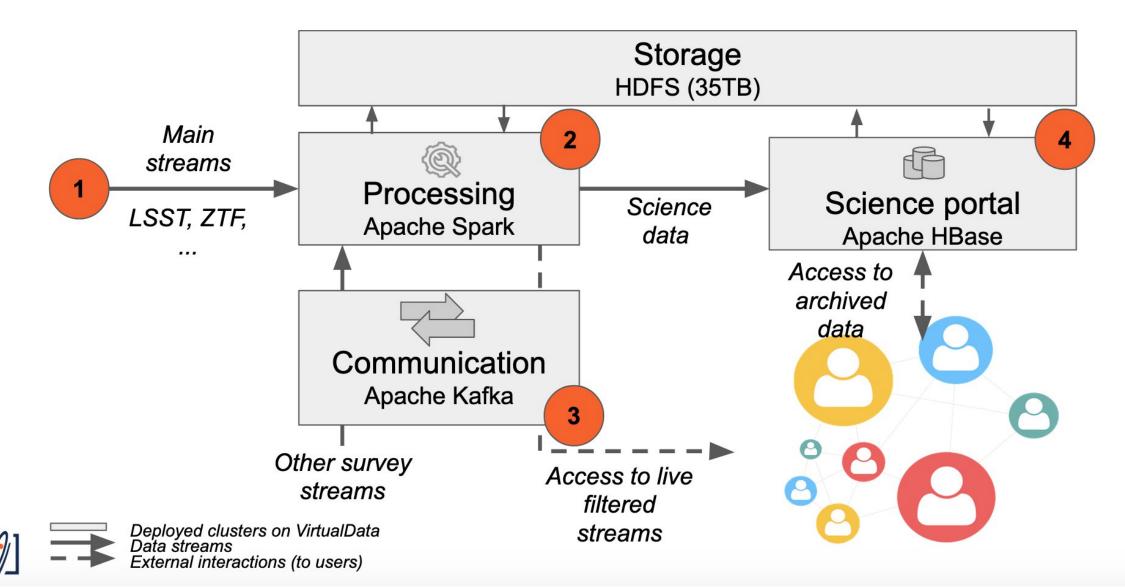
Brokers : collect, enrich, redistribute



Fink broker

- ~10 million alerts/night (~1TB/night).
- Our solution: distributing the load
 - Distributed computation (Apache Spark Streaming)
 - Distributed streaming (Apache Kafka)
 - Distributed database (Apache HBase)
 - Distributed graph (JanusGraph)
- Fink: broker using the big data ecosystem, based on cloud infrastructures.
 - Focus on supernovae (ML), microlensing, multi-messenger astronomy (GRB,GW ...)

Fink @ VirtualData



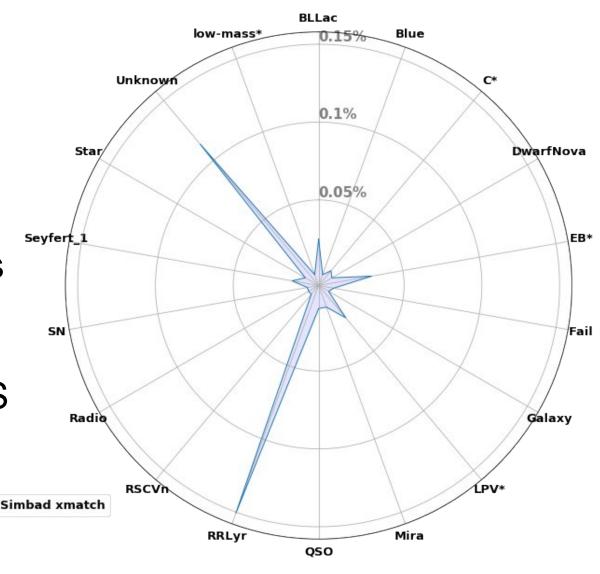
Performances

- Processing ZTF data @Virtual Data
 - Pathfinder for LSST
 - ~100K alerts/night (~10 GB/night)
- Simulating LSST streams, and beyond
 - We deployed a Kafka cluster to generate streams ondemand.
 - Processing routinely 20K alerts/min, and peak processing at 100K alerts/min.
 - Bottleneck is the storage, not (yet) the CPU! At a rate of 1TB/night, disks are quickly full...
- Trying to have cc-in2p3 on board
- answer: dec 2020



Cross-matching at scale

- Cross-match service
- Question: Are there already known objects in the stream?
- Problem: Standard cross-match is very slow! (we receive 10,000 alerts / 30 seconds)
- Our solution: Distributed crossmatch using xmatch service @ CDS Strasbourg.
- Cross-match of thousands of objects per second.



Conclusions

- We've been investigating the Spark solution for some years: huge potential for astronomy/cosmology
- simple/efficient interactive analysis with dataframes (teaching)
- efficient 3D tools (partitioning, DBSCAN, correlations...)
- Spark streaming: new technology that allows to follow modern alerts rates
- we use some ML methods in the broker but not obvious to interface to existing code (pytorch)
- beginning to have some experience on graphs: promising.
- but community is not yet ready to switch

Discussion

- user side: easy /efficient data analysis with dataframes (nothing new, in HEP ntuples known since the 80's...). But python/notebooks inertia (+publication pressure).
- little developers (language not understood by the former)

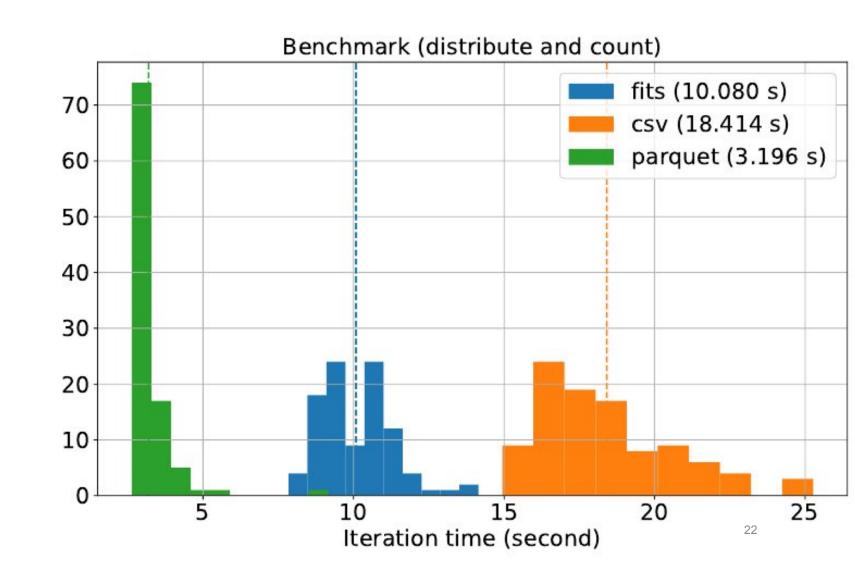
Gap between users/developers has grown (same in industry)

- 1. quick&dirty (but efficient) single-person analysis (physicists)
- 2. build a solid projet (engineers)

Backup

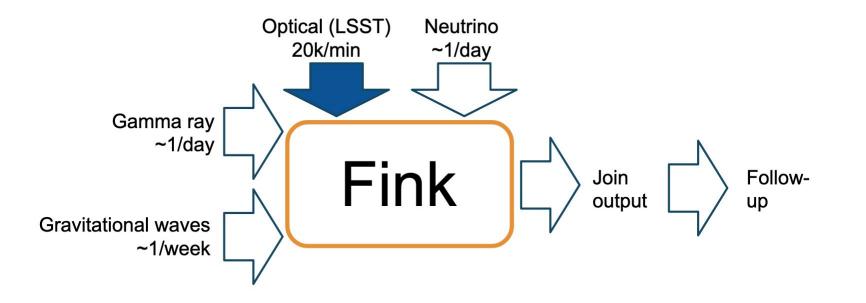
Spark-fits performances

- Billion rows
- Comparison to other connectors:
 - CSV
 - Parquet
- Comparable
 - Performances



Multi-messenger astronomy

- Identifying interesting LSST alerts is only part of the story
 - we need coordination with other surveys and facilities existing networks to allow follow-up of interesting sources.
 - Gamma ray bursts, neutrino telescopes, gravitational wave detectors, ...
- Performing stream-stream join with Apache Spark

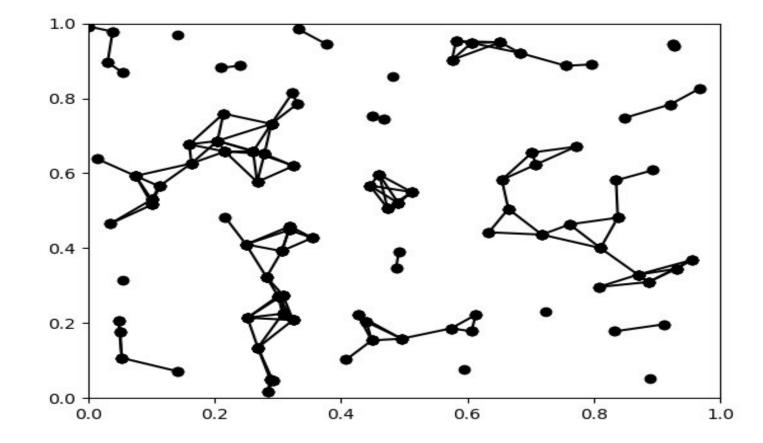


Apache Spark cluster @ VirtualData

- Multi-tenant cluster, mainly used for genomics and astronomy, and more recently geosciences.
 - Computing: 1+9 machines (18 CPU each, 2GB RAM/core)
 - Cluster manager: Apache Mesos / transitioning to Kubernetes
 - Storage: 35 TB on HDFS (replication factor x3) / transitioning to Ceph/S3
 - Software distribution: CernVM FS
 - Monitoring: Ganglia, Grafana

Scaling jobs from MB to TB in one place!

Geometric Graphs



LSST data products

