
Open PhD position: 
deep multitask learning with latent structured prediction for natural language processing 
 
The natural language and knowledge representation (RCLN) team, a member of the computer             
science laboratory (LIPN) of the University Sorbonne Paris Nord (Paris 13), is offering a              
three-year PhD research position starting in September, 2020. 
 
We are looking for students with a masters degree (Master 2 or equivalent) in computer science                
with a background in natural language processing and machine learning. The selected            
candidate will work on joint modeling of linguistic structures and downstream applications using             
ideas from multitasking and latent structure prediction in deep neural networks. 
 
To apply, please send the following documents to Nadi Tomeh (tomeh@lipn.fr) 

● CV 
● Academic transcripts including grades 
● Master thesis or report (if available) 
● Motivation letter adapted to the context 
● Recommendation letters 

 
Scientific context 
The aim of multi-task learning is to improve the performance of a model for some task by                 
exploiting signals available in training data and domain knowledge available for a related task              
(Caruana, 1998). Most tasks in natural language processing (NLP) are best modeled as             
structured prediction where output contains multiple variables, possibly with rich and complex            
interdependencies and constraints. Tasks including morphological, syntactic and semantic         
analysis as well as applications including question answering and machine translation, involve            
discrete combinatorial structures such as sequences, trees and graphs. Uncovering such           
hidden linguistic structure even as intermediate steps is important to inform downstream tasks             
and inject domain knowledge (He et al., 2017). 
 
Deep neural networks are particularly suited for multi-task scenarios and have been consistently             
showing positive results since early work by (Collobert and Weston, 2008). The basic and              
most-studied mechanism is based on modeling each task separately while sharing parameters            
of general-purpose hidden layers between models. Different tasks are then trained separately in             
a supervised way. Shared parameters adapt to all tasks and predictions are made separately or               
from the same layer. Søgaard and Goldberg (2016) showed that sharing parameters is effective              
especially when the tasks are not similar or no overlapping data is available for training. Tasks                
are thus organised in a hierarchy or a pipeline with different layers corresponding to different               
tasks and supervision provided at the right level. This idea is easily generalized to architectures               
connecting many tasks such as POS tagging, chunking, dependency parsing, semantic           
relatedness, and textual entailment, etc. The tasks are organized in a predefined architecture             
based on linguistic hierarchies where increasingly complex tasks happen at successively           
deeper layers (Hashimoto et al., 2017). Learning may use separate objectives for each task with               
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regularisation to avoid catastrophic forgetting. This approach can be further generalized as in             
Sluice Networks (Ruder et al., 2017). A more involved mechanism is based on joint modeling of                
the output from multiple tasks with similar structures which are scored jointly and learned using               
a joint objective from parallel annotations (Peng et al, 2017). 
 
Creating annotated resources for all tasks is prohibitively expensive and supervised training            
reduces the ability of intermediate structures to adapt to the final output. Joint modeling can be                
extended to divergent structures learned from disjoint datasets by treating the missing            
structures as latent variables (Peng et al, 2018) thus allowing for unsupervised or             
partially-supervised settings. In fact, in the absence of annotations for some (possibly            
intermediate) tasks, dense representations of the corresponding structures may be implicitly           
learned by the hidden layers of powerful models such as BERT. Interpreting these             
representations as structures requires training a separate model however (Hewitt and Manning,            
2019). Alternatively, one can explicitly model latent structures of different tasks as separate             
components and building blocks connected together in a deep architecture that is end-to-end             
trainable. Hidden structured variables are inferred from input and used to dynamically define the              
network's computation graph. These structure predictors need to be differentiable to allow for             
learning by backpropagation of error gradients. Furthermore, inference needs to be tractable in             
order to handle the exponential number of distinct structures. Several approaches can be             
considered to strike a balance between expressivity, differentiability and tractability. These           
include (a) reinforcement learning with policy gradient networks (Yogatama et al., 2017) (b) the              
use of marginal inference in graphical models with softmax layers which is differentiable.             
Marginalization involves summing over exponentially many structures which is tractable for           
specific structures such as sequences and trees as in structured attention networks (Kim et al.,               
2017); (c) the use of structured argmax layers with maximum a posteriori inference which is not                
differentiable but can be replaced with differentiable optimisation methods as SPIGOT (Peng et             
al., 2018b); (LP-)SparseMAP (Niculae et al., 2018; Niculae and Martins, 2020) and differentiable             
dynamic programming (Mensh and Blondel, 2018; Corro and Titov, 2019). 
 
Applicative context 
Depending on the selected profile, we will apply the developed ideas from multitasking and              
latent structured prediction in deep neural networks to one of two application domains:             
information extraction for knowledge graph construction, or Arabic NLP. In both cases we will              
build a hierarchy of interdependent tasks with a downstream application The architecture is             
trained end-to-end with available resources for supervised tasks and latent structured variables            
for unsupervised ones. 
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