High order coupled matrix-tensor factorization

Journée GDR - Nouvelles méthodes tensorielles et applications Ivry-sur-Seine, 17 juin 2019

Abdelhak BOUDEHANE Laboratoire des signaux et système, Université de Paris-Sud

This is a joint work with

- Yassine Zniyed, Laboratoire des Signaux et Systèmes, Univ. Paris-Sud, France.
- Arthur Tenehaus, , Laboratoire des Signaux et Systèmes, Univ. Paris-Sud, France.
- Laurent Le Brusquet, , Laboratoire des Signaux et Systèmes, Univ. Paris-Sud, France.
- Rémy Boyer, Centre de Recherche en Informatique, Signal et Automatique de Lille, Univ. Lille, France.

- A. Boudehane, Y. Zniyed, A. Tenehaus, L. Le Brusquet and R. Boyer. BREAKING THE CURSE OF DIMENSIONALITY FOR COUPLED TENSOR-MATRIX FACTORIZATION. CAMSAP. 2019.
- Y. Zniyed, R. Boyer, A.L.F. de Almedia and G. Favier, *High-Order CPD Estimation with Dimensionality Reduction Using A Tensor Train Model*, EUSIPCO, 2018.
- Y. Zniyed, R. Boyer, A.L.F. de Almedia and G. Favier, *High-order tensor factorization via trains of coupled third-order CP and Tucker decompositions*, Linear Algebra and its Applications (LAA), 2018, submitted.
- Y. Zniyed, R. Boyer, A.L.F. de Almedia and G. Favier, *Multidimensional Harmonic Retrieval Based on Vandermonde Tensor Train*, Elsevier, Signal Processing, vol. 163, pp. 75-86, 2019.
- Y. Zniyed, R. Boyer, A.L.F. de Almedia and G. Favier, A TT-Based Hierarchical Framework for Decomposing Big Data Tensors, SIAM journal on Scientific Computing (SISC), 2018, submitted.
- Y. Zniyed, R. Boyer, A.L.F. de Almedia and G. Favier, *Tensor Train Representation of* MIMO channels using the JIRAFE Method, Elsevier, Signal Processing, 2019, submitted.
- Y. Zniyed, R. Boyer, A.L.F. de Almedia and G. Favier, *Tensor-Train modeling for* MIMO-OFDM tensor coding-and-forwarding relay systems, EUSIPCO, 2019.

Scalars, vectors, matrices, and tensors:

$$x, \mathbf{x}, \mathbf{X}, \mathbf{X}$$

• Mode-*n* product

$$[\boldsymbol{\mathcal{X}} \times_{n} \boldsymbol{\mathsf{A}}]_{i_{1}\cdots i_{n-1}ji_{n+1}\cdots i_{N}} = \sum_{i_{n}=1}^{I_{N}} [\boldsymbol{\mathcal{X}}]_{i_{1}i_{2}\cdots i_{N}} [\boldsymbol{\mathsf{A}}]_{ji_{n}}$$

• \times_n^m product $[\mathcal{A} \times_n^m \mathcal{B}]_{i_1,\dots,i_{n-1},i_{n+1},\dots,i_N,j_1,\dots,j_{m-1},j_{m+1},\dots,j_M}$ = $\sum_{k=1}^{I_n} [\mathcal{A}]_{i_1,\dots,i_{n-1},k,i_{n+1},\dots,i_N} [\mathcal{B}]_{j_1,\dots,j_{m-1},k,j_{m+1},\dots,j_M}.$

Outline

- 1 Coupled Matrix/Tensor Factorization (CMTF)
- 2 All-At-Once Optimization
- 3 Curse of Dimensionality
- 4 dimensionality reduction : JIRAFE
- Impact on CMTF
- 6 C-JIRAFE
 - 7 Simulation

Coupled Matrix/Tensor Factorization (CMTF)

Figure: 3d-tensor ${\mathcal X}$ coupled with matrix ${\mathbf Y}$ on the first mode

Canonical Polyadic (CP) model tensor

$$\boldsymbol{\mathcal{X}} = \llbracket \boldsymbol{P}_1, \boldsymbol{P}_2, \dots, \boldsymbol{P}_Q
rbracket$$

Rank Factorization Matrix

$$\boldsymbol{Y} = \boldsymbol{P}_k \boldsymbol{V}^T$$

 $f(\boldsymbol{P}_1, \boldsymbol{P}_2, \dots, \boldsymbol{P}_Q, \boldsymbol{V}) = ||\boldsymbol{\mathcal{X}} - [\![\boldsymbol{P}_1, \boldsymbol{P}_2, \dots, \boldsymbol{P}_Q]\!]||_F^2 + ||\boldsymbol{Y} - \boldsymbol{P}_k \boldsymbol{V}^T||_F^2$

Figure: Factor graph modelization of CMTF

A. BOUDEHANE

HO-CMTF

Gradient-based approach : CMTF-OPT¹.

- All-at-once optimization.
- Gradient :

$$\nabla f = \begin{bmatrix} \operatorname{vec}\left(\frac{\partial f}{\partial \boldsymbol{P}_{1}}\right) \\ \vdots \\ \operatorname{vec}\left(\frac{\partial f}{\partial \boldsymbol{P}_{Q}}\right) \\ \operatorname{vec}\left(\frac{\partial f}{\partial \boldsymbol{V}}\right) \end{bmatrix}$$

 Using Nonlinear Conjugate Gradient (NCG) algorithm to jointly-compute factor matrices (*P*₁,...,*P*_Q, *V*).

A. BOUDEHANE

¹E. Acar, T. G. Kolda, and D. M. Dunlavy. "All-at-once Optimization for Coupled Matrix and Tensor Factorizations". In: *in 9th Workshop on Mining and Learning with Graphs, San Diego, CA* (2011).

Limitation

• **Curse of dimensionality** : Case of coupled high-order tensor matrix factorization :

 \rightarrow Number of elements increases exponentially in function of the dimensions.

- \rightarrow Exponential increase of computation and memory requirements.
- \Rightarrow Limition in terms of order

Dimensionality reduction : Tensor Train Model

D-order TT decomp. with TT-ranks (R_1, \ldots, R_{D-1}) [Oseledets, 2011]

$$\mathcal{X}(i_1, i_2, \cdots, i_D) = \sum_{\substack{r_1, \cdots, r_{D-1} = 1 \\ \cdots \in \mathcal{G}_{D-1}(r_{D-2}, i_{D-1}, r_{D-1})}^{R_1, \cdots, R_{D-1}} \mathbf{G}_1(i_1, r_1) \mathcal{G}_2(r_1, i_2, r_2,) \mathcal{G}_3(r_2, i_3, r_3) \cdots$$

Fig. Forney-style factor graph [Forney, 2001]

The most compact TN with a dominant storage cost : $O((D-2)IR^2)$. Linear in D.

Model equivalence - Computational relation (TT-SVD)

Recall that a *D*-order CPD of rank-*R* is defined as $\mathcal{X} = \mathcal{I}_{D,R} \times_1 \mathbf{P}_1 \times_2 \mathbf{P}_2 \times_3 \ldots \times_D \mathbf{P}_D$

Key result [Zniyed, Boyer et al, submitted to LAA]

•
$$\mathcal{G}_k = \mathcal{I}_{3,R} \times_1 \mathsf{M}_{k-1} \times_2 \mathsf{P}_k \times_3 \mathsf{M}_k^{-T}$$

•
$$G_1 = P_1 M_1^{-1}$$

• $\mathbf{G}_D = \mathbf{M}_{D-1} \mathbf{P}_D^T$

• Reminding the Tensor-Train model

$$oldsymbol{\mathcal{X}} = oldsymbol{\mathcal{G}}_1 imes_2^1 oldsymbol{\mathcal{G}}_2 imes_3^1 \dots imes_{Q-1}^1 oldsymbol{\mathcal{G}}_{Q-1} imes_Q^1 oldsymbol{\mathcal{G}}_Q$$

• The matrix **Y**

$$\boldsymbol{Y} = \boldsymbol{P}_k \boldsymbol{V}^T$$

• The TT-core \mathcal{G}_k shares the common factor \boldsymbol{P}_k with \boldsymbol{Y}

$$\boldsymbol{\mathcal{G}}_{k} = [\![\boldsymbol{M}_{k-1}, \boldsymbol{P}_{k}, \boldsymbol{M}_{k}^{-T}]\!]$$

Impact on CMTF : Equivalence CMTF / Coupled-TT

Figure: Factor graph modelization of coupled tensor-train

Equivalence CMTF / Coupled-TT

k-th 3-order CMTF problem:

 $f_2(\boldsymbol{M}_{k-1}, \boldsymbol{P}_k, \boldsymbol{M}_k, \boldsymbol{V}) = \lambda_1 || \boldsymbol{\mathcal{G}}_k - [\![\boldsymbol{M}_{k-1}, \boldsymbol{P}_k, \boldsymbol{M}_k^{-T}]\!] ||_F^2 + \lambda_2 || \boldsymbol{Y} - \boldsymbol{P}_k \boldsymbol{V}^T ||_F^2$

Breaking the curse of dimensionality

The high-order CMTF problem has been reduced into a 3-order CMTF and a collection of 3-order CPDs

Figure: Factor graph modelization of 3-order CMTF

• Least-squares solution for \boldsymbol{P}_k

$$\boldsymbol{P}_{k} = \begin{bmatrix} \lambda_{1} \boldsymbol{G}_{k}^{(2)} & \lambda_{2} \boldsymbol{Y} \end{bmatrix} \begin{bmatrix} \lambda_{1} (\boldsymbol{M}_{k}^{-T} \odot \boldsymbol{M}_{k-1})^{T} & \lambda_{2} \boldsymbol{V}^{T} \end{bmatrix}^{\dagger}$$

• \boldsymbol{V} is given by

$$\boldsymbol{V} = (\boldsymbol{P}_{k}^{T})^{\dagger} \boldsymbol{Y}$$

C-JIRAFE

Input: Tensor X, matrix Y, order Q, rank R and common mode k**Output:** Estimated factor matrices P_1, P_2, \dots, P_Q, V

TT cores estimation

$$[\boldsymbol{G}_1, \boldsymbol{\mathcal{G}}_2, \dots, \boldsymbol{\mathcal{G}}_{Q-1}, \boldsymbol{\mathcal{G}}_Q)] = \mathsf{TT}\operatorname{-}\mathsf{SVD}(\boldsymbol{\mathcal{X}}, R)$$

$$[\hat{\boldsymbol{M}}_{k-1}, \hat{\boldsymbol{P}}_{k}, \hat{\boldsymbol{M}}_{k}^{-T}, \hat{\boldsymbol{V}}] = \mathsf{Exp-ALS}(\boldsymbol{\mathcal{G}}_{k}, \boldsymbol{Y}, R)$$

3 The rest of factors for $q = k - 1 \dots 2$ $[\hat{M}_{q-1}, \hat{P}_q] = \text{Bi-ALS}(\mathcal{G}_q, \hat{M}_q^{-T}, R)$

end for for $q = k + 1 \dots Q - 1$ $[\hat{P}_q, \hat{M}_q^{-T}] = \text{Bi-ALS}(\mathcal{G}_q, \hat{M}_{q-1}, R)$ and for

end for $\hat{P}_1 = G_1 \hat{M}_1$ and $\hat{P}_Q = G_Q^T \hat{M}_{Q-1}^{-T}$

Figure: Coupled JIRAFE

Bi-ALS loops can be done in parallel independently

Figure: NMSE (log-scale) in function of signal to noise ratio (dB) for Q = 4, R = 2, N = 10

Tensor order	C-JIRAFE	CMTF-OPT	Gain
4	0.0201 (s)	0.1124 (s)	5.5920
5	0.0310 (s)	1.3369 (s)	43.1258
6	0.1057 (s)	20.5572 (s)	194.4863

Table: Execution time in function of order for a fixed signal to noise ratio SNR = 10 dB

- Breaking the curse of dimensionality for HO-CMTF.
- Extracting the common mode by solving a 3-order CMTF only.
- Using double coupling (physical model coupling and the TT coupling).
- Reducing execution time.
- Possibility of parallel processing.