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Abstract—Photometric redshift estimation is an important
problem in astrophysics. Accurate redshift predictions for all
astronomical objects are still needed, as well as scalable algo-
rithms to leverage big data in sky digital surveys. The goal of
this work is to explore scalable deep learning architectures and
algorithms, which can improve current state-of-the-art results.

Index Terms—photometric redshift, machine learning, deep
learning

I. INTRODUCTION

Accurate photometric redshift estimation is crucial for up-
coming multi-band sky surveys. Many empirical methods were
proposed based on the large amount of data generated by
the surveys. Majority of the methods are based on measured
magnitudes and colors for objects. This is based upon the
spectrum of an object’s radiation having strong spectral lines
that can be detected by the relatively crude filters. Apart
from that, some authors [1] propose that using additional
morphological features can help to improve predictive power
for extended galaxies.

Success in deep learning methods such as convolutional
networks enabled use of raw sky images as an input instead
of an output from the fixed pipeline for extracting different
measures of magnitudes for an object. Several researchers
have explored such techniques, and found that they can reach
the accuracy of state-of-the-art methods using convolutional
neural networks [2][3]. These methods can help to automate
feature extraction step from images. Although, there is a trade-
off as they require significantly more computational resources
compared to the standard machine learning algorithms.

II. DIFFICULTIES THAT ALGORITHMS FACE

There are several main features of the redshift reconstruction
problem, which algorithms should take into account:

• There is a lack of spectroscopic coverage of magnitudes-
colors space in sky surveys [4].

• There is a mismatch between magnitude error distribu-
tions associated with spectroscopic and photometric data
sets [4].

• The number of photometric observations outnumbers the
number of spectroscopic observations (where we get true
value of redshift). This fact provides an opportunity for

semi-supervised learning as there is a huge amount of
unlabeled data.

• Databases sizes grow quicker and bigger as new sky
digital surveys appear. This fact set requirements for
algorithms to scale horizontally as volume and velocity
are the main components of big data in sky surveys.

Apart from these difficulties, most of the research is concen-
trated on separate class of objects such as galaxies or quasars.
For example, template-ml predictions for SDSS DR12 and
DR13 database were based only on photometrically identified
galaxies [5], having low prediction power for other types of
objects or misclassified cases. In addition, different ways to
measure magnitudes are better for different types of objects
(for example, for point-like objects like stars and quasars PSF
magnitudes are the best measure, colors derived from model
magnitudes are better for galaxies, etc. [7]).

III. TOWARDS NEW METHODS WITH DEEP LEARNING

The goal of our work is to develop an algorithm that can
provide accurate redshift predictions for all photometric mea-
surements. First, we explore boosting algorithms that provided
state-of-the-art results according to [8]. We developed algo-
rithms based on XGBoost library [10] for gradient boosting
algorithm, as it provides out-of-the-box distributed training on
multiple machines and supports many cloud dataflow systems.

Currently we are exploring how deep learning methods can
improve predictions based on different measures of magni-
tudes. We propose several models that can improve photo-
metric redshift predictions for all objects (galaxies, quasars,
stars) in the SDSS Data Release 13 [7]. For building deep
neural network architectures we use Keras library [11] on top
of TensorFlow [12], which provides out-of-the-box scalability
for multiple machines (CPUs and GPUs).

We focus on developping one single model for redshift
prediction of all photometric observations in SDSS DR13 with
available spectroscopic redshift for 3.3 million objects. We use
different measures of magnitudes, derived colors, photometric
errors, and differences of PSF magnitudes with composite
model magnitudes for implicit galaxy separation. First, we
consider only galaxies, and then show how other objects as
quasars and stars influence the quality of redshift prediction.
The loss function for algorithms to optimize is the root mean



squared of normalized errors (∆znorm). In the table I one can
find the results for training on galaxies that we obtained for
the best gradient boosting model and deep neural network with
5 hidden layers (using regularization and batch normalization
technique).

TABLE I
REDSHIFT PREDICTION FOR GALAXIES ONLY

std(∆znorm) bias(∆znorm) | ∆znorm |> 0.15

XGBoost 0.0316 0.0001 0.58%
galaxies

DNN 0.0333 0.0001 0.61%
galaxies

We can observe that the results of training on galaxies are
quite satisfactory for both models, although boosting performs
slightly better. In the table II one can see current research
results with the main metrics for the best reported models. In
some papers instead of standard deviation the reported metric
was a 69th percentile of normalized errors (σ68(∆znorm)),
although, usually standard deviation, σ68, and RMSE have
similar values.

TABLE II
DIFFERENT REPORTED RESULTS IN THE LITERATURE

std(∆znorm) bias(∆znorm) | ∆znorm |> 0.15

[1] 0.041 -0.003 0.99%
galaxies

[2] σ68 = 0.03 0.001 1.56%
galaxies

[8] σ68 = 0.0248 0.0008 0.73%
galaxies

[13] 0.15 0.032 > 0.3 : 6.53%
quasars

[6] 0.0490 0.0081 7.6%
galaxies

[9] 0.024 0.0 1.51%
galaxies

[5] 0.0205 0.00005 4.11%
galaxies

(template
algorithm for
SDSS DR13)

Next, in the table III we show how adding all other types
of objects results into less accurate predictions. Although, the
quality of predictions varies a little for galaxies, one can see
that the biggest errors are made for quasars.

Deep neural network has shown better RMSE score and
reduces outliers rate for stars by a half, compared to the
boosting model. Although, the predictions for quasars have
more than a half of catastrophic outliers, current work on
pretraining deep neural networks with utilizing large amounts
of unlabelled data and seek for other architectures are being
investigated. The developed code is available online on GitHub
[14].
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TABLE III
REDSHIFT PREDICTION FOR ALL OBJECTS

std(∆znorm) bias(∆znorm) | ∆znorm |> 0.15

XGBoost 0.1689 0.0015 10.7%
overall

XGBoost 0.0547 -0.001 1.3%
galaxies

XGBoost 0.2668 0.0954 16.5%
stars

XGBoost 0.3003 -0.1607 52.3%
quasars
DNN 0.1481 -0.021 9.1%

overall
DNN 0.0477 -0.008 1.3%

galaxies
DNN 0.1575 0.0415 8%
stars
DNN 0.3546 -0.2182 54.5%

quasars
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