
Interactive Mapping Specification
with Exemplar Tuples

Angela Bonifati Ugo Comignani Emmanuel Coquery Romuald Thion
angela.bonifati@univ-lyon1.fr ugo.comignani@univ-lyon1.fr emmanuel.coquery@univ-lyon1.fr romuald.thion@univ-lyon1.fr

CNRS LIRIS and Université Claude Bernard Lyon 1

1. Motivations and goals
We propose an Interactive Mapping Specification process targeting non-
expert users that:

• bootstraps with a set of exemplar tuples pES,ETq, corresponding to
a limited number of tuples provided as input;

• challenges the non-expert users with simple boolean questions, which
are affordable for such users;

• is guaranteed to always produce a GLAV mapping M1 that general-
izes a mapping M in the user’s mind, which is unknown beforehand.

2. Proposed framework
Input: set of input pairs

Normalization

Atom
refinement

Join
refinement

Output: refined mapping Σfinal

pE1
S,E1

Tq...pEn
S ,En

Tq

Σnorm

Answer: Yes or No
ΣatRef (normalized)

Question

Answer: Yes or No
Σfinal (normalized)

Question

Prior to the interactive process, a
normalization step is undertaken in
order to simplify the mappings and
make them self-explanatory for non-
expert users. Then, an atom refine-
ment step and a join refinement step
are respectively devoted to get the
normalized mapping as closer as pos-

sible to the mapping that the user has in mind. This interactive process
leverages simple boolean questions on even smaller refinement-driven
tuples, derived from the initial exemplar tuples provided as input. We
guarantee that (i) the obtained refined mappings are in normal form and
that (ii) they are more general than the canonical mapping.

3. Specifying mappings using user exemplar tuples
User exemplar tuples:

ES:
Company
IdCompany Name Town

'C1' 'AA' 'Paris'
'C2' 'Ev' 'Lyon'

Flight
Departure Arrival IdCompany

'Lyon' 'Paris' 'C1'
'Paris' 'Lyon' 'C2'

Travel Agency
IdAgency Name Town

'A1' 'TC' 'L.A.'

ET:

Firm
Id Name Town

'Id1' 'AA' 'Paris'
'Id2' 'Ev' 'Lyon'
'Id3' 'TC' 'L.A.'

Departure
Town IdFirm
'Lyon' 'Id1'
'Paris' 'Id2'

Arrival
Town IdFirm
'Paris' 'Id1'
'Lyon' 'Id2'

Canonical mapping:
m : Companypc1, aa, parisq ^ Companypc2, ev, lyonq ^ TravelAgencypa1, tc, laq

^ Flightplyon, paris, c1q ^ Flightpparis, lyon, c2q

Ñ Did1, id2, id3,Firmpid1, aa, parisq ^ Departureplyon, id1q ^ Arrivalpparis, id1q

^ Firmpid2, ev, lyonq ^ Departurepparis, id2q ^ Arrivalplyon, id2q ^ Firmpid3, tc, laq

Normalized mapping:
Before initiating the refinement steps, the canonical mapping is nor-
malized [1] in order to separate unrelated connected components in the
right-hand sides. This leads to the following split-reduced mapping:

ma : Companypc1, aa, parisq ^ Companypc2, ev, lyonq ^ TravelAgencypa1, tc, laq

^ Flightplyon, paris, c1q ^ Flightpparis, lyon, c2q

Ñ Did1,Firmpid1, aa, parisq ^ Departureplyon, id1q ^ Arrivalpparis, id1q

mb : Companypc1, aa, parisq ^ Companypc2, ev, lyonq ^ TravelAgencypa1, tc, laq

^ Flightplyon, paris, c1q ^ Flightpparis, lyon, c2q

Ñ Did2,Firmpid2, ev, lyonq ^ Departurepparis, id2q ^ Arrivalplyon, id2q

mc : Companypc1, aa, parisq ^ Companypc2, ev, lyonq ^ TravelAgencypa1, tc, laq

^ Flightplyon, paris, c1q ^ Flightpparis, lyon, c2q

Ñ Did3,Firmpid3, tc, laq

During normalization, split reduction is followed by the deletion of
logically equivalent tgds. In the above example, this leads to the removal
of the tgd ma (or, equivalently, mb) in order to obtain Σnorm.

Final mapping after interactive specification:
m1 : Companypc1, aa, paris1q ^ Flightplyon, paris2, c1q

Ñ Did1,Firmpid1, aa, paris1q ^ Departureplyon, id1q ^ Arrivalpparis2, id1q

m2 : TravelAgencypa1, tc, laq Ñ Did3,Firmpid3, tc, laq

4. Atom refinement
Principle:
Remove superfluous atoms in the left-hand sides of normalized tgds.
Exploration space:
Given a tgd, the possible sets of left-hand side atoms can be represented by
a semi-lattice where the lower levels are the smallest valid sets of left-hand
side atoms.
User feedback:
During semi-lattice exploration, the user is asked about the target tuples
generated using only the subset of source tuples corresponding to the atoms
in one node at a time.

Example with a bottom-up breadth-first approach:

tC1;C2u tC1;F1u tC1;F2u

tC1;C2;TAu tC1;C2;F1u tC1;F1;TAu tC1;C2;F2u tC1;F1;F2u tC1;F2;TAu

tC1;C2;F1;TAu tC1;C2;F1;F2u tC1;F1;F2;TAu

tC1;C2;F1;F2;TAutC1;C2u invalidated set
tC1;F1u validated set

tC1;C2;F1u pruned set

As the sole set validated is tC1;F1u, the following tgd is generated:
Companypc1, aa, parisq ^ Flightplyon, paris, c1q

Ñ Did1,Firmpid1, aa, parisq ^ Departureplyon, id1q ^ Arrivalpparis, id1q

5. Join refinement
Principle:
For each tgd generated by atom refinement, identify redundant joins en-
tailed by multiple occurrences of a given variable.
Exploration space:
As with atom refinement, we can build a semi-lattice of partitions repre-
senting possible joins between variable occurrences.
User feedback:
Similarly to atom refinement, the user is asked about the validity of small
sets of tuples.

6. Experimental study
Atom refinement

Scenario

N
u
m

b
e
r 

o
f 
q
u
e
s
ti
o
n
s
 p

e
r 

tg
d

2

4

6

a1−to−a2 amalgam2 dblp−amalgam GUS−to−BIOSQL SDB1−to−SDB2 SDB1−to−SDB3 SDB2−to−SDB3

Exploration strategy:
Bottom−up Breadth−first
Bottom−up Depth−first
Top−down Breadth−first
Top−down Depth−first

Join refinement

Scenario

N
u
m

b
e
r 

o
f 
q
u
e
s
ti
o
n
s
 p

e
r 

tg
d

5

10

15

a1−to−a2 amalgam2 dblp−amalgam GUS−to−BIOSQL SDB1−to−SDB2 SDB1−to−SDB3 SDB2−to−SDB3

Exploration strategy:
Bottom−up Breadth−first
Bottom−up Depth−first
Top−down Breadth−first
Top−down Depth−first

50
.2

50
.2

13
5.

9
13

6.
2

13
6.

8

43
.6

43
.6

• We have used seven real data integration scenarios of the iBench
benchmark [2].

• We have simulated the user’s ambiguities by adding up to ten su-
perfluous atoms or redundant joins to the initial exemplar tuples,
derived from the above scenarios.

• We have tested four exploration strategies : bottom-up and top-
down, each one with depth-first and breadth-first variations.

References
[1] G. Gottlob, R. Pichler, and V. Savenkov:

Normalization and optimization of schema mappings. VLDB J., 20(2):277–302, 2011.

[2] P.C. Arocena, B. Glavic, R. Ciucanu, and R.J. Miller:
The ibench integration metadata generator. Proceedings of VLDB, 9(3):108–119, 2015.


